Refine Your Search

Topic

Author

Search Results

Journal Article

A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers

2014-04-01
2014-01-0052
A control algorithm is developed for active/semi-active suspensions which can provide more comfort and better handling simultaneously. A weighting parameter is tuned online which is derived from two components - slow and fast adaptation to assign weights to comfort and handling. After establishing through simulations that the proposed adaptive control algorithm can demonstrate a performance better than some controllers in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with MR dampers and several sensors. The vehicle is tested on smooth and rough roads and over speed bumps.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

An Efficient Lift Control Technique in Electro-hydraulic Camless Valvetrain Using Variable Speed Hydraulic Pump

2011-04-12
2011-01-0940
Significant improvement in fuel consumption, torque delivery and emission could be achieved through flexible control of the valve timings, duration and lift. In most existing electro-hydraulic variable valve actuation systems, the desired valve lift within every engine cycle is achieved by accurately controlling of the solenoid-valve opening interval; however, due to slow response time, precision control of these valves is difficult particularly during higher engine speeds. In this paper a new lift control strategy is proposed based on the hydraulic supply pressure and flow control. In this method, in order to control the peak valve lift, the hydraulic pump speed is precisely controlled using a two-input gearbox mechanism. This eliminates the need for precision control of the solenoid valves opening interval within every cycle.
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
Technical Paper

Motorized Shoulder Belt Tensioning: Modeling and Performance for a Diverse Occupant Population

2008-04-14
2008-01-0515
Motorized shoulder belt tensioning is an occupant protection technology that has promise to reduce automotive crash injuries. The objective of this study was to model the response of a diverse forward-leaning occupant population (6-year-old child, 5th female, 50th male, 95th male) to shoulder belt tensioning during straight line pre-crash braking. The lumped mass model was based on experimental volunteer data for motorized shoulder belt tensioning gathered in a previous quasistatic study. The three dimensional model incorporated the biomechanical properties of the occupant populations, a motorized shoulder belt tensioner (DC motor and controller) and shoulder belt webbing models. Model validation was achieved against the volunteer experiments for angular torso position, torso velocity and shoulder belt moment applied to the torso.
Technical Paper

Humidity Sensing Based on Ordered Porous Silicon for the Application on Fuel Cell

2008-04-14
2008-01-0687
Porous silicon as gas/chemical sensing material has been widely investigated in recent years. In this paper, the humidity sensing property of n-type porous silicon with ordered structure is studied for the first time. The ordered porous silicon used in this experiment has uniform pore size, pore shape and distribution. Both the membrane and closed bottom samples were studied. The resistance change of the porous silicon was measured. A 22-28% decrease of resistance was observed when relative humidity was changed from 1% to 100%. Both the response time and the recovery time were within 10 minutes, and 90% of the response can be reached in 6 minutes for the PS membrane sample. The possible sensing mechanism and future work are also discussed in this paper.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Hybrid III Response in a SAE Baja Vehicle under Frontal Impacts

2008-12-02
2008-01-2982
Vehicles designed for the Baja SAE competition operate on challenging off-road terrain and may be required to withstand accidental impacts with other vehicles and obstacles. Although significant injuries are not commonly observed in this competition, it is important to understand the performance of these vehicles in crash scenarios to optimize frame design and vehicle performance. A finite element model comprising the vehicle chassis and associated subsystem weights, a Hybrid III occupant, and safety systems was developed to evaluate vehicle impact performance in frontal crash. Impacts velocities up to 36 kph were considered, and no significant risk of head, neck or thoracic injury was predicted. Neck injury (as predicted by Nij) and chest acceleration were found to be the most critical, reaching 66% and 75% of their threshold values, respectively, in the most severe crashes considered.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Control Analysis for Efficiency Optimization of a High Performance Hybrid Electric Vehicle with Both Pre and Post Transmission Motors

2016-04-05
2016-01-1253
The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
Technical Paper

Comparing the Whole Body Vibration Exposures across Three Truck Seats

2017-06-05
2017-01-1836
Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
Technical Paper

An Algorithm to Calculate Chest Deflection from 3D IR-TRACC

2016-04-05
2016-01-1522
A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
Technical Paper

Efficient Electro-Thermal Model for Lithium Iron Phosphate Batteries

2018-04-03
2018-01-0432
The development of a comprehensive battery simulator is essential for future improvements in the durability, performance and service life of lithium-ion batteries. Although simulations can never replace actual experimental data, they can still be used to provide valuable insights into the performance of the battery, especially under different operating conditions. In addition, a single-cell model can be easily extended to the pack level and can be used in the optimization of a battery pack. The first step in building a simulator is to create a model that can effectively capture both the voltage response and thermal behavior of the battery. Since these effects are coupled together, creating a robust simulator requires modeling both components. This paper will develop a battery simulator, where the entire battery model will be composed of four smaller submodels: a heat generation model, a thermal model, a battery parameter model and a voltage response model.
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

Improving Stability of a Narrow Track Personal Vehicle using an Active Tilting System

2014-04-01
2014-01-0087
A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim.
Technical Paper

Impact of Temperature on the A123 Li-Ion Battery Performance and Hybrid Electric Vehicle Range

2013-04-08
2013-01-1521
Within the last decade, the automotive industry has made major progress toward the electrification of drive trains and application of electrochemical power sources. Among available storage solutions, Li-ion batteries are considered as the most attractive and are set to be used in the next generation of hybrid and electric vehicles. This is due to their superiority in energy density, power density, and low self-discharge and high cycle life compared to other chemistries. However, there are some limitations associated with Li-ion battery; among them is the operating temperature range. Any deviation from a narrow temperature range may result in low overall performance and potential degradation of the cells. In this paper, impact of ambient temperature on the A123 Li-ion batteries performance is investigated. A123 cells have been tested under constant charge-discharge cycles, hybrid pulse power characterization (HPPC) tests and also standard drive cycle tests.
Technical Paper

Fuel Cell Hybrid Control Strategy Development

2006-04-03
2006-01-0214
Supervisory control strategies for a hybrid fuel cell powertrain are developed and simulated using Simulink models and the Powertrain Systems Analysis Toolkit (PSAT). The control strategy selects the power splitting ratio between a 65kW Hydrogenics fuel cell power module and a 70kW Cobasys Nickel Metal Hydride (NiMH) battery pack. Simple control algorithms targeting a battery pack State of Charge (SOC), or maximizing the instantaneous powertrain efficiency are initially considered and analyzed. A comprehensive control strategy optimizing powertrain efficiency, vehicle performance, emissions, and long-term reliability is then developed and simulated. The simulated vehicle using the comprehensive control strategy with reliability considerations exhibits a 21% mileage improvement as compared to a simple rule-based control algorithm.
Technical Paper

Fuel Cell Hybrid Powertrain Design Approach for a 2005 Chevrolet Equinox

2006-04-03
2006-01-0744
A fuel cell-battery hybrid powertrain SUV vehicle is designed using an optimized model-based design process. Powertrain and fuel storage components selected include a 65 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) power module, two 67 kW electric traction motors, a 35 MPa compressed hydrogen storage tank, a 70 kW nickel metal hydride battery pack, and a University of Waterloo in-house DC/DC converter design. Hardware control uses two controllers, a main supervisory controller and a subsystem controller in addition to any embedded component control modules. Two key innovations of this work include the hybrid control strategy and the DC/DC converter. The final powertrain characteristics are expected to meet a set of Vehicle Technical Specifications (VTS).
X