Refine Your Search

Topic

Search Results

Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

Design of an Advanced Traction Controller for an Electric Vehicle Equipped with Four Direct Driven In-Wheel Motors

2008-04-14
2008-01-0589
The vision for the future automotive chassis is to interconnect the lateral, longitudinal, and vertical dynamics by separately controlling driving, braking, steering, and damping of each individual wheel. A major advantage of all wheel drive electric vehicles with four in-wheel motors is the possibility to control the torque and speed at each wheel independently. This paper proposes a traction controller for such a vehicle. It estimates the road's adhesion potential at each wheel and adjusts each motor voltage, such that the longitudinal slip is kept in an optimal range. For development and validation, a full vehicle model is designed in ADAMS/View software, in co-simulation with motor and control elements, modeled in MATLAB/Simulink.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Technical Paper

Implementation and Optimization of a Fuel Cell Hybrid Powertrain

2007-04-16
2007-01-1069
A fuel cell hybrid powertrain design is implemented and optimized by the University of Waterloo Alternative Fuels Team for the ChallengeX competition. A comprehensive set of bench-top and in-vehicle validation results are used to generate accurate fuel cell vehicle models for SIL/HIL control strategy testing and tuning. The vehicle is brought to a “99% buy-off” level of production readiness, and a detailed crashworthiness analysis is performed. The vehicle performance is compared to Vehicle Technical Specifications (VTS).
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Advance Noise Path Analysis, A Robust Engine Mount Optimization Tool

2003-10-27
2003-01-3117
Many design problems are discovered often late in the development process, when design flexibility is limited. It is the art of the refinement engineers to find a solution to any unpredicted issues at this stage. The refinement process contains many hours of testing and requires many prototypes. Having an accurate experimental model of the system in this phase could reduce refinement time significantly. One of the areas that usually require refinement and tuning late in the design process is engine and body mounting systems. In this paper, we introduce a technique to optimize the mounting system of a vehicle for a given objective function using experimental/numerical analysis. To obtain an accurate model of the vehicle, we introduce an experimental procedure based upon the substructuring method. The method eliminates the need for any accurate finite element method of the vehicle. Experimental results of the implementation of this approach to a real vehicle are presented.
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

2017-03-28
2017-01-0043
Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Investigations of Atkinson Cycle Converted from Conventional Otto Cycle Gasoline Engine

2016-04-05
2016-01-0680
Hybrid electric vehicles (HEVs) are considered as the most commercial prospects new energy vehicles. Most HEVs have adopted Atkinson cycle engine as the main drive power. Atkinson cycle engine uses late intake valve closing (LIVC) to reduce pumping losses and compression work in part load operation. It can transform more heat energy to mechanical energy, improve engine thermal efficiency and decrease fuel consumption. In this paper, the investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine have been carried out. First of all, high geometry compression ratio (CR) has been optimized through piston redesign from 10.5 to 13 in order to overcome the intrinsic drawback of Atkinson cycle in that combustion performance deteriorates due to the decline in the effective CR. Then, both intake and exhaust cam profile have been redesigned to meet the requirements of Atkinson cycle engine.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Technical Paper

Simulation Study of 1D-3D Coupling for Different Exhaust Manifold Geometry on a Turbocharged Gasoline Engine

2018-04-03
2018-01-0182
One-dimensional (1D) simulation tools, the computing speed of which is relatively fast, usually solve simple complexity problems. The solving process of 1D simulation is mostly based on one-dimensional dynamic equations and empirical laws and thus in some cases it cannot obtain a similar accuracy with the time-consuming three-dimensional (3D) simulation tools. The 1D-3D co-simulation, which combines the advantages of the two simulation tools while minimizes the disadvantages, is a method that integrates and runs the two simulation tools concurrently. The coupled simulation can offer a 3D analysis for which a detailed information is needed while offer system level information in the rest of the whole system where averaged results are sufficient. The approach not only minimizes the computational cost, but avoids demand for imposing accurate boundary conditions to the 3D simulation.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Efficient Electro-Thermal Model for Lithium Iron Phosphate Batteries

2018-04-03
2018-01-0432
The development of a comprehensive battery simulator is essential for future improvements in the durability, performance and service life of lithium-ion batteries. Although simulations can never replace actual experimental data, they can still be used to provide valuable insights into the performance of the battery, especially under different operating conditions. In addition, a single-cell model can be easily extended to the pack level and can be used in the optimization of a battery pack. The first step in building a simulator is to create a model that can effectively capture both the voltage response and thermal behavior of the battery. Since these effects are coupled together, creating a robust simulator requires modeling both components. This paper will develop a battery simulator, where the entire battery model will be composed of four smaller submodels: a heat generation model, a thermal model, a battery parameter model and a voltage response model.
Technical Paper

Parameter Identification of a Quasi-Dimensional Spark-Ignition Engine Combustion Model

2014-04-01
2014-01-0385
Parameter identification of a math-based spark-ignition engine model is studied in this paper. Differential-algebraic equations governing the dynamic behavior of the engine combustion model are derived using a quasi-dimensional modelling scheme. The model is developed based on the two-zone combustion theory with turbulent flame propagation through the combustion chamber [1]. The system of equations includes physics-based equations combined with the semi-empirical Wiebe function. The GT-Power engine simulator software [2], a powerful tool for design and development of engines, is used to extract the reference data for the engine parameter identification. The models is GT-Power are calibrated and validated with experimental results; thus, acquired data from the software can be a reliable reference for engine validation purposes.
Technical Paper

Research on Hierarchical Control of Automobile Automatic Emergency Braking System Based on V2V

2021-12-15
2021-01-7025
In order to ensure braking efficiency and improve the comfort of drivers and passengers, a two-stage braking grading control system was proposed. In the upper controller, the enhanced time-to-collision model under different working conditions was designed, and the braking threshold was determined considering the comfort of braking drivers and passengers, and the driver’s braking behavior was analyzed to determine the vehicle braking deceleration. The vehicle longitudinal dynamic model was built in the lower layer, the PID controller was used to reduce the model deviation. This paper improves the test standard on the basis of China-New Car Assessment Program. The results show that the remaining relative distance between the two vehicles was in the safe range. The control strategy can achieve collision avoidance of vehicle emergency braking.
Technical Paper

Modelling Diesel Engine Natural Gas Injection: Injector/Cylinder Boundary Conditions

1994-03-01
940329
Direct injected natural gas diesel engines are currently being developed. Numerical analyses results are presented for 20.0 MPa (≈ 3000 psia; 200 atm), 444 K, natural gas injection into 4.0 MPa cylinder air where the ambient turbulence field is representative of diesel engines. Two very important non-intuitive, observations are made. First, the seemingly reasonable spatially uniform velocity profile currently used at the injector exit is not appropriate, rather a double-hump profile is correct. Second, a spatially uniform, injector exit, temperature profile results in local temperature overestimates as large as 300 K. Considering the strong role of temperature on chemical kinetics, this second observation may have profound implications on the validity of conclusions reached using uniform exit profiles.
Technical Paper

1D-3D Coupled Analysis for Motor Thermal Management in an Electric Vehicle

2022-03-29
2022-01-0214
Motor thermal management of electric vehicles (EVs) is becoming more significant due to its close relations to vehicle aerodynamic performance and power consumption, while computer aided engineering (CAE) plays an important role in its development. A 1D-3D coupled model is established to characterize transient thermal performance of the motor in an electric vehicle on a high performance computer (HPC) platform. The 1D motor thermal management model is integrated with the 1D powertrain model, and a 3D thermal model is established for the motor, while online data exchange is realized between the 1D and 3D models. The 1D model gives boundaries such as inlet coolant temperature, mass flowrate and motor heat generation to the 3D model, while the 3D model gives back boundaries such as heat transfer to coolant simultaneously. Transient simulations are performed for the 140kph(20°C) driving cycle, and the model is calibrated with experimental data.
Technical Paper

A 1D Real-Time Engine Manifold Gas Dynamics Model Using Orthogonal Collocation Coupled with the Method of Characteristics

2019-04-02
2019-01-0190
In this paper, a new solution method is presented to study the effect of wave propagation in engine manifolds, which includes solving one-dimensional models for compressible flow of air. Velocity, pressure, and density profiles are found by solving a system of non-linear Partial Differential Equations (PDEs) in space and time derived from Euler’s equations. The 1D model includes frictional losses, area change, and heat transfer. The solution is traditionally found by utilizing the Method of Characteristics and applying finite difference solutions to the resulting system of ordinary differential equations (ODEs) over a discretized grid. In this work, orthogonal collocation is used to solve the system of ODEs that is defined along the characteristic curves. Orthogonal polynomials are utilized to approximate velocity, pressure, sound speed, and the characteristic curves along which the system of PDEs reduce to a system of ODEs.
X