Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Model-Based Design Case Study: Low Cost Audio Head Unit

2011-04-12
2011-01-0052
The use of model-based software development in automotive applications has increased in recent years. Current vehicles contain millions of lines of code, and millions of dollars are spent each year fixing software issues. Most new features are software controlled and many times include distributed functionality, resulting in increased vehicle software content and accelerated complexity. To handle rapid change, OEMs and suppliers must work together to accelerate software development and testing. As development processes adapt to meet this challenge, model-based design can provide a solution. Model-based design is a broad development approach that is applied to a variety of applications in various industries. This paper reviews a project using the MATLAB/Simulink/Stateflow environment to complete a functional model of a low cost radio.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Technical Paper

Numerical Investigation of Friction Material Contact Mechanics in Automotive Clutches

2020-04-14
2020-01-1417
A wet clutch model is required in automotive propulsion system simulations for enabling robust design and control development. It commonly assumes Coulomb friction for simplicity, even though it does not represent the physics of hydrodynamic torque transfer. In practice, the Coulomb friction coefficient is treated as a tuning parameter in simulations to match vehicle data for targeted conditions. The simulations tend to deviate from actual behaviors for different drive conditions unless the friction coefficient is adjusted repeatedly. Alternatively, a complex hydrodynamic model, coupled with a surface contact model, is utilized to enhance the fidelity of system simulations for broader conditions. The theory of elastic asperity deformation is conventionally employed to model clutch surface contact. However, recent examination of friction material shows that the elastic modulus of surface fibers significantly exceeds the contact load, implying no deformation of fibers.
Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
Journal Article

Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles

2017-03-28
2017-01-0639
Increasing compression ratio (CR) is one of the most fundamental ways to improve engine efficiency, but the CR of practical spark ignition engines is limited by knock and spark retard at high loads. A variable CR mechanism could improve efficiency by using higher CR at low loads, and lower CR (with less spark retard) at high loads. This paper quantifies the potential efficiency benefits of applying variable CR to a modern downsized, boosted gasoline engine. Load sweeps were conducted experimentally on a multi-cylinder gasoline turbocharged direct injection (GTDI) engine at several CRs. Experimental results were compared to efficiency versus CR correlations from the literature and were used to estimate the fuel economy benefits of 2-step and continuously variable CR concepts on several engine/vehicle combinations, for various drive cycles.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Journal Article

In-Vehicle Characterization of Wet Clutch Engagement Behaviors in Automatic Transmission Systems

2018-04-03
2018-01-0395
A new generation of a planetary-gear-based automatic transmission system is designed with an increasing number of ratio steps. It requires synchronous operation of one or more wet clutches, to achieve a complex shift event. A missed synchronization results in drive torque disturbance which may be perceived by vehicle occupants as an undesirable shift shock. Accurate knowledge of clutch behaviors in an actual vehicle environment is indispensable for achieving precise clutch controls and reducing shift calibration effort. Wet clutches are routinely evaluated on an industry-standard SAE#2 tester during the clutch design process. While it is a valuable tool for screening relative frictional behaviors, clutch engagement data from a SAE#2 tester do not correlate well with vehicle shift behaviors due to the limited reproducibility of realistic slip, actuator force profiles, and lubrication conditions.
Journal Article

Analytic Model of Powertrain Drive Cycle Efficiency, with Application to the US New Vehicle Fleet

2016-04-05
2016-01-0902
An analytic model of powertrain efficiency on a drive cycle was developed and evaluated using hundreds of cars and trucks from the US EPA ‘Test Car Lists’. The efficiency properties of naturally aspirated and downsized turbocharged engines were compared for vehicles with automatic transmissions on the US cycles. The resulting powertrain cycle efficiency model is proportional to the powertrain marginal energy conversion efficiency K, which is also its upper limit. It decreases as the powertrain matching parameters, the displacement-to-mass ratio (D/M) and the gearing ratio (n/V), increase. The inputs are the powertrain fuel consumption, the vehicle road load, and the cycle work requirement. They could be modeled simply with only minor approximations through the use of absolute inputs and outputs, and systematic use of scaling. On the Highway test, conventional automatic transmission vehicles of moderate performance achieve between 25% and 30% powertrain efficiency.
Journal Article

Using Bluetooth Low Energy for Dynamic Information-Sharing in Vehicle-to-Vehicle Communication

2017-03-28
2017-01-1650
Bluetooth Low Energy (BLE) is an energy-efficient radio communication technology that is rapidly gaining popularity for various Internet of Things (IoT) applications. While BLE was not designed specifically with vehicular communications in mind, its simple and quick connection establishment mechanisms make BLE a potential inter-vehicle communication technology, either replacing or complementing other vehicle-to-vehicle (V2V) technologies (such as the yet to be deployed DSRC). In this paper we propose a framework for V2V communication using BLE and evaluate its performance under various configurations. BLE uses two major methods for data transmission: (1) undirected advertisements and scanning (unconnected mode) and (2) using the central and peripheral modes of the Generic Attribute Profile (GATT) connection (connected mode).
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Technical Paper

Mathematical Analysis of Clutch Thermal Energy during Automatic Shifting Coupled with Input Torque Truncation

2020-04-14
2020-01-0967
A step-ratio automatic transmission alters torque paths for gearshifting through engagement and disengagement of clutches. It enables torque sources to run efficiently while meeting driver demand. Yet, clutch thermal energy during gearshifting is one of the contributors to the overall fuel loss. In order to optimize drivetrain control strategy, including the frequency of shifts, it is important to understand the cost of shift itself. In a power-on upshift, clutch thermal energy is primarily dissipated during inertia phase. The interaction between multiple clutches, coupled with input torque truncation, makes the decomposition of overall energy loss less obvious. This paper systematically presents the mathematical analysis of clutch thermal energy during the inertia phase of a typical single-transition gearshift. In practice, a quicker shift is generally favored, partly because the amount of energy loss is considered smaller.
Journal Article

Control System Development for the Dual Drive Hybrid System

2009-04-20
2009-01-0231
Automotive manufacturers continue to move further toward powertrain electrification. There are already many hybrid electric vehicles on the market that are based on a variety of system architectures. Ford Motor Company has investigated a new Dual Drive configuration that promises to overcome some of the attribute deficiencies associated with current architectures. The primary objective of this development project was to demonstrate the fuel economy potential of this system in a vehicle. To accomplish this objective, the team used an internally developed, formal Controls Development Process (CDP) for the control system design and validation. This paper describes the development of the vehicle control system in the context of this process.
Journal Article

Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement

2008-04-01
2008-01-2761
A belt driven Front End Accessory Drive (FEAD) is used to efficiently supply power to accessory components on automotive engines. The total energy absorbed by the FEAD consists of the accessory component requirements, the belt deformation and friction losses as well as the bearing losses. The accessory component torque requirements provide accessory function such as air conditioning, fluid pumping and electrical power generation. Alternatively, belt related torque losses are a significant parasitic loss, since they do not contribute any useful work. This paper will explain the source of energy loss in FEADs and outline a comprehensive strategy to reduce it. Test results comparing the effect of reduced friction on fuel consumption will be presented as well.
Journal Article

Safety Aspects on a Micro-Hybrid Vehicle with Manual Gearbox

2008-04-14
2008-01-0118
The hazard analysis for the Stop-Start control strategy of a Micro-Hybrid vehicle with manual gearbox is presented. The strategy allows for stops in gear and in neutral; this leads to specific hazards. Implications for the architecture of the electronic control unit, the software architecture, and the development process, especially software testing, are discussed.
Journal Article

Development of Magneto-Elastic Torque Sensor for Automatic Transmission Applications

2013-04-08
2013-01-0301
Progress in the design and application of the magneto-elastic torque sensor to automotive drivetrain systems has taken the technology from the concept level to the point where it is considered production feasible. The latest generation of the sensors shows promising results regarding both the capabilities and applications to powertrain controls. Sensor designs, electronics and packaging layout are maturing. Well-defined component specifications and requirements are becoming available. The sensor utilities for real-time shift analysis and friction element control are established through vehicle-level investigation to demonstrate the production feasibility of the technology for transmission torque sensing.
X