Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparison of the Particulate Matter Index and Particulate Evaluation Index Numbers Calculated by Detailed Hydrocarbon Analysis by Gas Chromatography (Enhanced ASTM D6730) and Vacuum Ultraviolet Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Analysis (ASTM D8071)

2021-08-16
2021-01-5070
The Particulate Matter Index (PMI) is a tool that provides an indication of a fuel’s tendency to produce Particulate Matter (PM) emissions. Currently, the index is being used by various fuel laboratories and the Automotive OEMs as a tool to understand the gasoline fuel’s impact on both PM from engine hardware and vehicle-out emissions. In addition, a newer index that could be used to give an indication of the PM tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), is shown to have a good correlation to PMI. The data used in those indices are collected from chemical analytical methods. This paper will compare gas chromatography (GC) methods used by three laboratories and discuss how the different techniques may affect the PMI and PEI calculation.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Wheel Bearing Brinelling and a Vehicle Curb Impact DOE to Understand Factors Affecting Bearing Loads

2017-09-17
2017-01-2526
As material cleanliness and bearing lubrication have improved, wheel bearings are experiencing less raceway spalling failures from rotating fatigue. Warranty part reviews have shown that two of the larger failure modes for wheel bearings are contaminant ingress and Brinell damage from curb and pothole impacts. Warranty has also shown that larger wheels have higher rates of Brinell warranty. This paper discusses the Brinell failure mode for bearings. It reviews a vehicle test used to evaluate Brinell performance for wheel bearings. The paper also discusses a design of experiments to study the effects of factors such as wheel size, vehicle loading and vehicle position versus the bearing load from a vehicle side impact to the wheel. As the trend in vehicle styling is moving to larger wheels and low profile tires, understanding the impact load can help properly size wheel bearings.
Technical Paper

Investigation of Fracture Behavior of Deep Drawn Automotive Part affected by Thinning with Shell Finite Elements

2020-04-14
2020-01-0208
In the recent decades, tremendous effort has been made in automotive industry to reduce vehicle mass and development costs for the purpose of improving fuel economy and building safer vehicles that previous generations of vehicles cannot match. An accurate modeling approach of sheet metal fracture behavior under plastic deformation is one of the key parameters affecting optimal vehicle development process. FLD (Forming Limit Diagram) approach, which plays an important role in judging forming severity, has been widely used in forming industry, and localized necking is the dominant mechanism leading to fracture in sheet metal forming and crash events. FLD is limited only to deal with the onset of localized necking and could not predict shear fracture. Therefore, it is essential to develop accurate fracture criteria beyond FLD for vehicle development.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

DSRC Performance Comparison With and Without Antenna Diversity Using Different Transmission Power

2012-04-16
2012-01-0491
Vehicle-to-Vehicle (V2V) safety application research based on short range real-time communication has been researched for over a decade. Examples of V2V applications include Electronic Emergency Brake Light, Do Not Pass Warning, Lane Departure Warning, and Intersection Movement Assist. It is hoped that these applications, whether present as warning or intervention, will help reduce the incidence of traffic collisions, fatalities, injuries, and property damage. The safety benefits of these applications will likely depend on many factors, such as usability, market penetration, driver acceptance, and reliability. Some applications, such as DNPW and IMA, require a longer communication range to be effective. In addition, Dedicated Short Range Communications (DSRC) may be required to communicate without direct line of sight. The signal needs to overcome shadowing effects of other vehicles and buildings that are in the way.
Technical Paper

Testing Methods and Recommended Validation Strategies for Active Safety to Optimize Time and Cost Efficiency

2020-04-14
2020-01-1348
Given the current proliferation of active safety features on new vehicles, especially for Advanced Driver Assistance Systems (ADAS) and Highly Automated Driving (HAD) technologies, it is evident that there is a need for testing methods beyond a vehicle level physical test. This paper will discuss the current state of the art in the industry for simulation-based verification and validation (V&V) testing methods. These will include, but are not limited to, "Hardware-in-the-Loop (HIL)", “Software-in-the-Loop (SIL)”, “Model-in-the-Loop (MIL)”, “Driver-in-the-Loop (DIL)”, and any other suitable combinations of the aforementioned (XIL). Aspects of the test processes and needed components for simulation will be addressed, detailing the scope of work needed for various types of testing. The paper will provide an overview of standardized test aspects, active safety software validation methods, recommended practices and standards.
Technical Paper

Kriging-Assisted Structural Design for Crashworthiness Applications Using the Extended Hybrid Cellular Automaton (xHCA) Framework

2020-04-14
2020-01-0627
The Hybrid Cellular Automaton (HCA) algorithm is a generative design approach used to synthesize conceptual designs of crashworthy vehicle structures with a target mass. Given the target mass, the HCA algorithm generates a structure with a specific acceleration-displacement profile. The extended HCA (xHCA) algorithm is a generalization of the HCA algorithm that allows to tailor the crash response of the vehicle structure. Given a target mass, the xHCA algorithm has the ability to generate structures with different acceleration-displacement profiles and target a desired crash response. In order to accomplish this task, the xHCA algorithm includes two main components: a set of meta-parameters (in addition target mass) and surrogate model technique that finds the optimal meta-parameter values. This work demonstrates the capabilities of the xHCA algorithm tailoring acceleration and intrusion through the use of one meta-parameter (design time) and the use of Kriging-assisted optimization.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Structural Performance Comparison between 980MPa Generation 3 Steel and Press Hardened Steel Applied in the Body-in-White A and B-Pillar Parts

2020-04-14
2020-01-0537
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance.
Journal Article

Preliminary Study of LIDAR Scanner-Based Collision Avoidance in Automated Guided Systems for Autonomous Power Equipment Products

2018-04-03
2018-01-0032
Technology is continuously being developed to prevent self-driving vehicles from crashing. That technology could also be considered for other autonomous products. Collision avoidance in automated guided systems using a light detection and ranging (LIDAR) scanner has been studied for application in low-speed autonomous Honda Power Equipment products, such as self-driving lawn mowers. The automotive application of a LIDAR scanner for autonomous driving is used for obstacle detection and offline local area. Such delineations do not exist in areas where power equipment is used, such as grass fields; therefore, identifying object height and distance is a relatively new area. For this study, a small LIDAR scanner with a resolution of 0.01 m and a measurement range of 0.05 to 40.00 m was used on a Honda self-driving lawn mower. The measurement distance data was directly processed in the scanner, enabling the drive unit to obtain distance information during actual operation.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Sled Tests

1998-02-23
980359
A series of eight sled tests was conducted using Hybrid III dummies and cadavers in order to examine the influence of foot placement on the brake pedal in frontal collisions. The brake pedal in the sled runs was fixed in a fully depressed position and the occupants' muscles were not tensed. The cadaver limbs and the Hybrid III lower extremities with 45° ankle and soft joint-stop were extensively instrumented to determine response during the crash event. Brake pedal reaction forces were measured using a six-axis load cell and high speed film was used for kinematic analysis of the crashes. Four right foot positions were identified from previous simulation studies as those orientations most likely to induce injury. In each test, the left foot was positioned on a simulated footrest, acting as a control variable that produced repeatable results in all dummy tests. Each of the different right foot orientations resulted in different loads and motions of the right leg and foot.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Computer Simulation

1998-02-23
980364
An Articulated Total Body frontal crash simulation was created with the dummy's right foot placed on the brake pedal. This study examined how interaction of the driver's foot with the brake pedal influenced the behavior of the lower extremities in frontal collisions. Braking parameters considered in the study included foot position on the pedal, whether or not the occupant's muscles were tensed and if the brake pedal was rigid or was allowed to depress. Two basic foot positions were identified as most likely to induce injury of the lower limb. One represented a foot that was pivoted about the heel from the gas pedal to the brake pedal. The other position replicated a foot that was lifted from the gas pedal to the brake pedal, resulting in an initial gap between the heel and floor. Both positions resulted in different loads and behavior of the foot, indicating that driver pre-impact position is a contributing factor to one's injury risk.
Technical Paper

Considerations for the Application of Magnetorheological Dampers to a Crossover SUV

2008-04-14
2008-01-0347
Magnetorheological (MR) dampers have been used in the market on various vehicles since 2001. They use a special oil-based fluid (Magnetorheological Fluid, MRF) that contains small iron particles (1-10 μm in size) and a controllable electromagnetic piston to allow a wide range of damping forces. The system's wide range of available damping force combined with nearly instantaneous response time helps maximize body control while simultaneously providing outstanding ride comfort. This paper describes how the MR technology was combined with conventional suspension tuning to achieve an enhanced level of dynamic performance. While the MR damper offers enhanced performance, its unique response characteristics require tuning of other hardware components that could be considered to be beyond the normal tuning range for that of a conventional suspension.
Technical Paper

Lateral Injury Criteria for the 6-year-old Pedestrian - Part I: Criteria for the Head, Neck, Thorax, Abdomen and Pelvis

2004-03-08
2004-01-0323
Pediatric pedestrians are frequently involved in Pedestrian versus Motor Vehicle Collisions (PMVCs). While in recent years, the automotive industry has worked towards making cars less aggressive to pedestrians, the efforts have mainly focused on adult pedestrian safety. When they have included considerations for children, only head injuries have been evaluated. The development of automotive counter-measures that provide protection for both adult and pediatric pedestrians requires access to injury criteria for the entire body that specifically account for both the age-dependent tissue properties and the pedestrian's size. The objective of the present study is to derive lateral injury criteria for the head, neck, thorax, abdomen and pelvis that can be used in finite element and multi-body simulations of PMVCs involving the 6-year-old pedestrian (corresponding injury criteria for the upper and lower extremities are derived in part II of this study).
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Technical Paper

Lateral Injury Criteria for the 6-year-old Pedestrian - Part II: Criteria for the Upper and Lower Extremities

2004-03-08
2004-01-1755
Pediatric pedestrians are frequently involved in Pedestrian versus Motor Vehicle Collisions (PMVCs). While in recent years, the automotive industry has worked towards making cars less aggressive to pedestrians, the efforts have mainly focused on adult pedestrian safety. When they have included considerations for children, only head injuries have been evaluated. The development of automotive countermeasures that provide protection for both adult and pediatric pedestrians requires access to injury criteria for the entire body that specifically account for both the age-dependent tissue properties and the pedestrian's size. The objective of the present study is to derive lateral injury criteria for the upper and lower extremities that can be used in finite element and multi-body simulations of PMVCs involving the 6-year-old pedestrian (corresponding injury criteria for the head, neck, thorax, abdomen and pelvis are derived in part I of this study).
X