Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

Chemical Speciation of Exhaust Emissions from Trucks and Buses Fueled on Ultra-Low Sulfur Diesel and CNG

2002-03-04
2002-01-0432
A recently completed program was developed to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different truck and bus fleets operating in Southern California. The primary test fuels, ECD and ECD-1, are produced by ARCO, a BP company, and have less than 15 ppm sulfur content. A test fleet comprised of heavy-duty trucks and buses were retrofitted with one of two types of catalyzed diesel particle filters, and operated for one year. As part of this program, a chemical characterization study was performed in the spring of 2001 to compare the exhaust emissions using the test fuels with and without aftertreatment. A detailed speciation of volatile organic hydrocarbons (VOC), polycyclic aromatic hydrocarbons (PAH), nitro-PAH, carbonyls, polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzo-p-furans (PCDF), inorganic ions, elements, PM10, and PM2.5 in diesel exhaust was performed for a select set of vehicles.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Technical Paper

Experimental Investigation of the Heat Release Rate in a Sinusoidal Spark Ignition Engine

1989-02-01
890778
Compression and power stroke cycles for a 4 stroke cycle spark ignition engine modified by extending the connecting rod to simulate purely sinusoidal piston motion are analyzed over a range of operating speeds and are compared with those of a similar conventional engine. Heat release rate is estimated for both engines using a simple Wiebe function with the functional parameters found via a simplex curve fitting method used in conjunction with experimental pressure curves. It is shown that the functional parameters which represent the combustion and the duration of fuel burn are slightly larger over the range of operation in the sinusoidal engine while the shape factor remains largely the same. However, the pressure-crank angle curves are sufficiently similar such that conventional slider-crank curves can be used to model sinusoidal engines, which was the motivation behind this research.
Technical Paper

The Influence of Sinusoidal Piston Motion on the Thermal Efficiency of Engines

1987-10-01
871916
A new technique of translating linear to rotary motion, using the Stiller- Smith mechanism, can be applied to the design of internal combustion engines and compressors. This new mechanism produces purely sinusoidal motion of the pistons relative to crank angle, which is a different motion from that produced by a conventional slider-crank mechanism, Influence of this sinusoidal motion on thermodynamic performance of engines and compressors was investigated theoretically and experimentally. Data are presented from a numerical analysis of compression and of spark-ignited combustion. Also, pressure-time curves for a standard and a modified (long connecting rod) spark ignition engine are compared. All data confirm that there is little thermodynamic difference between the Stiller-Smith and slider-crank devices.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
X