Refine Your Search

Topic

Author

Search Results

Journal Article

Fundamental Analysis of Spring-Varied, Free Piston, Otto Engine Device

2014-04-01
2014-01-1099
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
Technical Paper

Low Temperature Combustion with Thermo-Chemical Recuperation

2007-10-29
2007-01-4074
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
Technical Paper

Modeling and Validation of an Over-the-Road Truck

2010-10-05
2010-01-2001
Heavy-duty trucks are an important sector to evaluate when seeking fuel consumption savings and emissions reductions. With fuel costs on the rise and emissions regulations becoming stringent, vehicle manufacturers find themselves spending large amounts of capital improving their products in order to be compliant with regulations. The Powertrain System Analysis Toolkits (PSAT), developed by the Argonne National Laboratory (ANL), is a simulation tool that helps mitigate costs associated with research and automotive system design. While PSAT has been widely used to predict the fuel consumption and exhaust emissions of conventional and hybrid light-duty vehicles, it also may be employed to test heavy-duty vehicles. The intent of this study was to develop an accurate model that predicts emissions and fuel economy for heavy-duty vehicles for use within PSAT.
Technical Paper

Numerical Simulation for Parametric Study of a Two-Stroke Direct Injection Linear Engine

2002-05-06
2002-01-1739
Research at West Virginia University has led to the development of a novel crankless reciprocating internal combustion engine. This paper presents a time-based model used to investigate the performance of two-stroke direct injection compression ignition linear engines. The two-stroke linear engine consists of two pistons, linked by a connecting rod, that are allowed to move freely in response to changes in the engine's fueling and load across the full operating cycle of the engine. The computer model uses a combination of a series of dynamic and thermodynamic numerical equations, which have been solved to provide a detailed analysis of the two-stroke direct injection linear engine operation. Parameters such as rate of combustion, convection heat transferred inside the cylinders, friction forces, external loads, acceleration, velocity profile, compression ratio, and in-cylinder pressures were modeled.
Technical Paper

Development and Initial Use of a Heavy-Duty Diesel Truck Test Schedule for Emissions Characterization

2002-05-06
2002-01-1753
In characterizing the emissions from mobile sources, it is essential that the vehicle be exercised in a way that reasonably represents typical in-use behavior. A heavy-heavy duty diesel truck (HHDDT) test schedule was developed from speed-time data gathered during two Air Resources Board-sponsored truck activity programs. The data were divided into four modes, termed Idle, Creep, Transient and Cruise Modes, in order of increasing speed. For the last three modes, speed-time schedules were created that represented all the data in that mode. Statistical parameters such as average speed, stops per unit distance, kinetic energy, maximum speed and acceleration and deceleration values were considered in arriving at these schedules. The schedules were evaluated using two Class 8 over-the-road tractors on a chassis dynamometer. Emissions were measured using a full-scale dilution tunnel, filtration for particulate matter (PM), and research grade analyzers for the gases.
Technical Paper

Emissions Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles

2001-09-24
2001-01-3675
Today's computer-based vehicle operation simulators use engine speed, engine torque, and lookup tables to predict emissions during a driving simulation [1]. This approach is used primarily for light and medium-duty vehicles, with large discrepancies inherently due to the lack of transient engine emissions data and inaccurate emissions prediction methods [2]. West Virginia University (WVU) has developed an artificial neural network (ANN) based emissions model for incorporation into the ADvanced VehIcle SimulatOR (ADVISOR) software package developed by the National Renewable Energy Laboratory (NREL). Transient engine dynamometer tests were conducted to obtain training data for the ANN. The ANN was trained to predict carbon dioxide (CO2) and oxides of nitrogen (NOx) emissions based on engine speed, torque, and their representative first and second derivatives over various time ranges.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Celebrating the Exclaim!

2003-03-03
2003-01-1260
West Virginia University redesigned a 2002 Ford Explorer and created a diesel electric hybrid vehicle to satisfy the goals of the 2002 FutureTruck competition. These goals were to demonstrate a 25% improvement in fuel economy, to reduce greenhouse gas emissions, to achieve California ULEV emissions, to demonstrate 1/8-mile acceleration of 11.5 seconds or less, and to maintain vehicular comforts and performance. West Virginia University's 2002 hybrid sport utility vehicle (SUV), the Exclaim!, meets or exceeds these goals. Using a post-transmission parallel configuration, WVU integrated a 2.5L Detroit Diesel Corporation engine along with a Unique Mobility 75kW electric motor to replace the stock drivetrain. With an emphasis on maintaining performance, WVU strived to improve areas where SUVs have traditionally performed poorly: fuel economy and emissions. Using regenerative braking, fuel economy has been significantly improved.
Technical Paper

Initial Investigations of a Novel Engine Concept for Use with a Wide Range of Fuel Types

1992-02-01
920057
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
Technical Paper

Influences of Real-World Conditions on In-Use Emission from Heavy-Duty Diesel Engines

2006-10-16
2006-01-3393
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Respirable Particulate Genotoxicant Distribution in Diesel Exhaust and Mine Atmospheres

1992-09-01
921752
Results of a research effort directed towards identifying and measuring the genotoxic properties of respirable particulate matter involved in mining exposures, especially those which may synergistically affect genotoxic hazard, are presented. Particulate matter emissions from a direct injection diesel engine have been sampled and assayed to determine the genotoxic potential as a function of engine operating conditions. Diesel exhaust from a Caterpillar 3304 diesel engine, representative of the ones found in underground mines, rated 100 hp at 2200 rpm is diluted in a multi-tube mini-dilution tunnel and the particulate matter is collected on 70 mm fluorocarbon coated glass fiber filters as well as on 8″ x 10″ hi-volume filters. A six mode steady state duty cycle was used to relate engine operating conditions to the genotoxic potential.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Nitric Oxide Conversion in a Spark Ignited Natural Gas Engine

2005-04-11
2005-01-0234
Understanding the nitric oxide (NO) conversion process plays a major role in optimizing the Selective NOX Recirculation (SNR) technique. SNR has been proven in gasoline and diesel engines, with up to 90% NOX conversion rates being achieved. This technique involves adsorbing NOX from an exhaust stream, then selectively desorbing the NOX into a concentrated NOX stream, which is fed back into the engine's intake, thereby converting a percentage of the concentrated NOX stream into harmless gases. The emphasis of this paper is on the unique chemical kinetic modeling problem that occurs with high concentrations of NOX in the intake air of a spark ignited natural gas engine with SNR. CHEMKIN, a chemical kinetic solver software package, was used to perform the reaction modeling. A closed homogeneous batch reactor model was used to model the fraction of NOX versus time for varying initial conditions and constants.
Technical Paper

Experimental Investigation of the Heat Release Rate in a Sinusoidal Spark Ignition Engine

1989-02-01
890778
Compression and power stroke cycles for a 4 stroke cycle spark ignition engine modified by extending the connecting rod to simulate purely sinusoidal piston motion are analyzed over a range of operating speeds and are compared with those of a similar conventional engine. Heat release rate is estimated for both engines using a simple Wiebe function with the functional parameters found via a simplex curve fitting method used in conjunction with experimental pressure curves. It is shown that the functional parameters which represent the combustion and the duration of fuel burn are slightly larger over the range of operation in the sinusoidal engine while the shape factor remains largely the same. However, the pressure-crank angle curves are sufficiently similar such that conventional slider-crank curves can be used to model sinusoidal engines, which was the motivation behind this research.
Technical Paper

Potential Applications of the Stiller-Smith Mechanism in internal Combustion Engine Designs

1987-11-08
871225
With few exceptions most internal combustion engines use a slider-crank mechanism to convert reciprocating piston motion into a usable rotational output. One such exception is the Stiller-Smith Mechanism which utilizes a kinematic inversion of a Scotch yoke called an elliptic trammel. The device uses rigid connecting rods and a floating/eccentric gear train for motion conversion and force transmission. The mechanism exhibits advantages over the slider-crank for application in internal combustion engines in areas such as balancing, size, thermal efficiency, and low heat rejection. An overview of potential advantages of an engine utilizing the Stiller-Smith Mechanism is presented.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
Technical Paper

Hybrid Diesel-Electric Heavy Duty Bus Emissions: Benefits Of Regeneration And Need For State Of Charge Correction

2000-10-16
2000-01-2955
Hybrid diesel electric buses offer the advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the need of the engine to follow load as closely as in a conventional bus. With the support of the Department of Energy (DOE), five Lockheed Martin-Orion hybrid diesel-electric buses were operated on the West Virginia University Transportable Laboratory in Brooklyn, New York. The buses were exercised through a new cycle, termed the Manhattan cycle, that was representative of today's bus use as well as the accepted Central Business District Cycle and New York Bus Cycle. Emissions data were corrected for the state of charge of the batteries. The emissions can be expressed in units of grams/mile, grams/axle hp-hr and grams/gallon fuel. The role of improved fuel economy in reducing oxides of nitrogen relative to conventional automatic buses is evident in the data.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
X