Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Evaluation of Diesel Oxidation Catalyst Conversion of Hydrocarbons and Particulate Matter from Premixed Low Temperature Combustion of Biodiesel

2011-04-12
2011-01-1186
Premixed low temperature combustion (LTC) in diesel engines simultaneously reduces soot and NOx at the expense of increased hydrocarbon (HC) and CO emissions. The use of biodiesel in the LTC regime has been shown to produce lower HC emissions than petroleum diesel; however, unburned methyl esters from biodiesel are more susceptible to particulate matter (PM) formation following atmospheric dilution due to their low volatility. In this study, the efficacy of a production-type diesel oxidation catalyst (DOC) for the conversion of light hydrocarbons species and heavier, semi-volatile species like those in unburned fuel is examined. Experimental data were taken from a high speed direct-injection diesel engine operating in a mid-load, late injection partially premixed LTC mode on ultra-low sulfur diesel (ULSD) and neat soy-based biodiesel (B100). Gaseous emissions were recorded using a conventional suite of analyzers and individual light HCs were measured using an FT-IR analyzer.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Technical Paper

The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions

1991-02-01
910460
An experimental investigation of the effects of ceramic coatings on diesel engine performance and exhaust emissions was conducted. Tests were carried out over a range of engine speeds at full load for a standard metal piston and two pistons insulated with 0.5 mm and 1.0 mm thick ceramic coatings. The thinner (0.5 mm) ceramic coating resulted in improved performance over the baseline engine, with the gains being especially pronounced with decreasing engine speed. At 1000 rpm, the 0.5 mm ceramic coated piston produced 10% higher thermal efficiency than the metal piston. In contrast, the relatively thicker coating (1 mm), resulted in as much as 6% lower thermal efficiency compared to baseline. On the other hand, the insulated engines consistently presented an attractive picture in terms of their emissions characteristics. Due to the more complete combustion in the insulated configurations, exhaust CO levels were between 30% and 60% lower than baseline levels.
Technical Paper

A Telemetry Linkage System for Piston Temperature Measurements in a Diesel Engine

1991-02-01
910299
A telemetry linkage system has been developed for piston temperature measurements in a direct-injection diesel engine. In parallel with the development of the telemetry linkage system, fast response thermocouples were installed at three piston locations - two on the bowl surface and one on the crown surface. A novel design was used to achieve electrical continuity between the piston and the connecting rod by means of a flexible steel strap pivoted on the piston skirt. The telemetry linkage system was then used to transport the electrical wires from the thermocouples to the external data acquisition system. A series of tests was run to determine the effects of location and load on piston surface temperatures. Surface temperature profiles varied substantially among the three locations, reflecting the differences in the combustion and heat flow characteristics of their surrounding regions.
Technical Paper

Implementation of a Fuel Spray Wall Interaction Model in KIVA-II

1991-09-01
911787
The original spray model in the KIVA-II code includes sub-models for drop injection, breakup, coalescence, and evaporation. Despite the sophisticated structure of the model, predicted spray behavior is not in satisfactory agreement with experimental results. Some of the discrepancies are attributed to the lack of a fuel jet wall impingement sub-model, a wall fuel layer evaporation sub-model, and uncertainties related to the choice of submodels parameters. A spray impingement model based on earlier research has been modified and implemented in KIVA-II. Heat transfer between the fuel layer on the piston surface and the neighboring gaseous charge has also been modelled based on the Colburn Analogy. A series of two dimensional simulations have been performed for a Caterpillar 1Y540 diesel engine to investigate droplet penetration, impingement, fuel evaporation, and chemical reaction, and the dependence of predictions on certain model parameters.
Journal Article

Low Temperature Heat Release of Palm and Soy Biodiesel in Late Injection Low Temperature Combustion

2014-04-01
2014-01-1381
The first stage of ignition in saturated hydrocarbon fuels is characterized as low temperature heat release (LTHR) or cool flame combustion. LTHR takes place as a series of isomerization reactions at temperatures from 600K to 900K, and is often detectable in HCCI, rapid compression machines, and early injection low temperature combustion (LTC). The experimental investigation presented attempts to determine the behavior of LTHR in late injection low temperature combustion in a medium duty diesel as fuel varies and the influence of such behavior on LTC torque and emissions.
Technical Paper

The Effect of the Location of Knock Initiation on Heat Flux Into an SI Combustion Chamber

1997-10-01
972935
A study has been conducted in order to investigate the effect of the location of knock initiation on heat flux in a Spark-Ignition (SI) combustion chamber. Heat flux measurements were taken on the piston and cylinder head under different knock intensity levels, induced by advancing the spark timing. Tests were performed with two engine configurations, the first with the spark-plug located on the rear side of the chamber and the other having a second non-firing spark-plug placed at the front side of the chamber. The presence of the non-firing spark-plug consistently shifted the location of autoignition initiation from the surface of the piston to its vicinity, without causing a noticeable increase in knock intensity. By localizing the initiation of knock, changes induced in the secondary flame propagation pattern affected both the magnitude and the rate of change of peak heat flux under heavy knock.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies

1990-02-01
900619
A personal computer-based vehicle powertrain simulation (VPS) is developed to predict fuel economy and performance. This paper summarizes the governing equations used in the model. Then the different simulation techniques are described with emphasis on the more complicated time-dependent simulation. The simulation is validated against constant speed and variable cycle test track data obtained for a 5 ton army truck. Then the simulation is used to compare the performance of the 5 ton truck when powered by a cooled and natually aspirated engine, a cooled and turbocharged engine, and an uncooled and turbocharged engine. Studies of the effect of payload, tire efficiency, and drag coefficient on vehicle performance are also conducted, as well as a performance comparison between manual and automatic transmissions. It is concluded that the VPS code can provide good predictions of vehicle fuel economy, and thus is a useful tool in designing and evaluating vehicle powertrains.
Technical Paper

The Effect of Thin Ceramic Coatings on Spark-Ignition Engine Performance

1990-04-01
900903
An experimental study of the effects of thin ceramic thermal barrier coatings on the performance of a spark-ignited gasoline engine was conducted. A modified 2.5 liter GM engine with ceramic-coated pistons, liners, head, valves and ports was used. Experimental results obtained from the ceramic engine were compared with baseline metal engine data. It was shown that at low-speed part-load conditions encountered in typical driving cycles the ceramic engine could achieve up to 18% higher brake power and up to 10% lower specific fuel consumption. At wide open throttle conditions, the two engines exhibited similar characteristics, except at high speeds where the metal engine showed better performance at the expense of inferior fuel economy. The ceramic coating did not produce any observable knock in the engine and showed no significant wear at the conclusion of the testing phase.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

The Reverse Engineering of a Turbocharged Diesel Engine through a Unified Systems Approach

2001-03-05
2001-01-1244
The need for a rigorous systems engineering approach to automotive powertrains has been addressed in this work from the perspective of the diesel engine. A high-fidelity engine simulation has been integrated with a total vehicle model for the purpose of reverse engineering the optimal powerplant for a given vehicle mission. Engine parameters have been coordinated between the simulations to develop a framework for total vehicle design. The design strategies discussed in this paper allow engine researchers to set targets for individual system components and to analyze the tradeoffs associated with different vehicle mission objectives. A detailed case study employing these techniques is presented for a conventional vehicle where the most fuel-efficient engine is found that simultaneously conforms to the desired performance criteria.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects

2001-03-05
2001-01-1028
The Homogeneous Charge Compression Ignition (HCCI) combustion concept is currently under widespread investigation due to its potential to increase thermal efficiency while greatly decreasing harmful exhaust pollutants. Simulation tools have been developed to explore the implications of initial mixture thermodynamic state on engine performance and emissions. In most cases these modeling efforts have coupled a detailed fuel chemistry mechanism with empirical descriptions of the in-cylinder heat transfer processes. The primary objective of this paper is to present a fundamentally based boundary layer heat transfer model. The two-zone combustion model couples an adiabatic core zone with a boundary layer heat transfer model. The model predicts film coefficient, with approximately the same universal shape and magnitudes as an existing global model.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Design of an Advanced Heavy Tactical Truck: A Target Cascading Case Study

2001-11-12
2001-01-2793
The target cascading methodology is applied to the conceptual design of an advanced heavy tactical truck. Two levels are defined: an integrated truck model is represented at the top (vehicle) level and four independent suspension arms are represented at the lower (system) level. Necessary analysis models are developed, and design problems are formulated and solved iteratively at both levels. Hence, vehicle design variables and system specifications are determined in a consistent manner. Two different target sets and two different propulsion systems are considered. Trade-offs between conflicting targets are identified. It is demonstrated that target cascading can be useful in avoiding costly design iterations late in the product development process.
X