Refine Your Search

Topic

null

Search Results

Journal Article

Investigation of the Sources of Combustion Noise in HCCI Engines

2014-04-01
2014-01-1272
This article presents an investigation of the sources combustion-generated noise and its measurement in HCCI engines. Two cylinder-pressure derived parameters, the Combustion Noise Level (CNL) and the Ringing Intensity (RI), that are commonly used to establish limits of acceptable operation are compared along with spectral analyses of the pressure traces. This study focuses on explaining the differences between these two parameters and on investigating the sensitivity of the CNL to the ringing/knock phenomenon, to which the human ear is quite sensitive. Then, the effects of independently varying engine operating conditions such as fueling rate, boost pressure, and speed on both the CNL and RI are studied. Results show that the CNL is not significantly affected by the high-frequency components related to the ringing/knock phenomenon.
Journal Article

Effect of Ignition Improvers on the Combustion Performance of Regular-Grade E10 Gasoline in an HCCI Engine

2014-04-01
2014-01-1282
This study explores the use of two conventional ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), to enhance the autoignition of the regular gasoline in an homogeneous charge compression ignition (HCCI) engine at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm. The results showed that both EHN and DTBP are very effective for reducing the intake temperature (Tin) required for autoignition and for enhancing stability to allow a higher charge-mass fuel/air equivalence ratio (ϕm). On the other hand, the addition of these additives can also make the gasoline too reactive at some conditions, so significant exhaust gas recirculation (EGR) is required at these conditions to maintain the desired combustion phasing. Thus, there is a trade-off between improving stability and reducing the oxygen available for combustion when using ignition improvers to extend the high-load limit.
Journal Article

Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency

2015-04-14
2015-01-0824
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends.
Journal Article

Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)

2015-04-14
2015-01-0813
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ϕ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion.
Journal Article

Increasing the Load Range, Load-to-Boost Ratio, and Efficiency of Low-Temperature Gasoline Combustion (LTGC) Engines

2017-03-28
2017-01-0731
Low-temperature gasoline combustion (LTGC) has the potential to provide gasoline-fueled engines with efficiencies at or above those of diesel engines and extremely low NOx and particulate emissions. Three key performance goals for LTGC are to obtain high loads, reduce the boost levels required for these loads, and achieve high thermal efficiencies (TEs). This paper reports the results of an experimental investigation into the use of partial fuel stratification, produced using early direct fuel injection (Early-DI PFS), and an increased compression ratio (CR) to achieve significant improvements in these performance characteristics. The experiments were conducted in a 0.98-liter single-cylinder research engine. Increasing the CR from 14:1 to 16:1 produced a nominal increase in the TE of about one TE percentage unit for both premixed and Early-DI PFS operation.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

An Experimental and Computational Evaluation of Two Dual-Intake-Valve Combustion Chambers

1990-10-01
902140
Multi-dimensional computations were made of spark-ignited premixed-charge combustion in two engines having pent-roof-shaped combustion chambers and two intake valves per cylinder, one with a central spark plug and the other with dual lateral spark plugs. The basic specifications for the two engines were the same except for differences in the number of spark plugs and exhaust valves. The effects of swirl and equivalence ratio on combustion, wall heat transfer, and nitric oxide emission characteristics were examined using a global combustion model that accounts for laminar-kinetics and turbulent-mixing effects. The initial conditions on both mean-flow and turbulence parameters at intake valve closing (IVC) were estimated in order to simulate engine operation either with both intake valves active or with one valve deactivated. The predictions were compared with experimentally derived pressure-time, heat loss, and nitric oxide emission data.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Technical Paper

Sufficient Condition on Valve Timing for Robust Load Transients in HCCI Engines

2010-04-12
2010-01-1243
Homogeneous Charge Compression Ignition (HCCI) combustion is known for its significant fuel economy benefit with near-zero NOx and particulate emissions. Stable HCCI combustion relies on a well-controlled temperature and composition of the cylinder charge at the intake valve closing that in turn requires a precise coordination of all engine inputs. In this paper, the HCCI combustion is realized by retaining hot residual from the previous combustion event using the recompression valve strategy. The recompression valve strategy closes the exhaust valves before the top dead center and opens the intake valves at an angle symmetric to the exhaust valve closing. Depending on the engine load, different valve open/close timings with respect to the crank position are used to trap different amounts of residual gases. It is critical to coordinate the change in the valve open/close timings with the change in the injected fuel quantity during load transients in order to maintain stable combustion.
Technical Paper

Multidimensional Port-and-Cylinder Gas Flow, Fuel Spray, and Combustion Calculations for a Port-Fuel-Injection Engine

1992-02-01
920515
An existing multidimensional in-cylinder flow code, KIVA, was modified to conduct port-and-cylinder gas flow, fuel spray, and combustion calculations in a port-fuel-injection engine. The effect of a moving valve with a stem was modeled using a novel internal obstacle technique in which the valve was represented by a group of discrete computational particles. Previously developed spray and combustion models were used to simulate fuel injection and combustion processes for a solid-cone shaped, pressure-atomized spray with isooctane as the fuel. The spray model was further modified to handle interactions between the spray drops and the valve. The model was applied to a generic port-fuel-injection engine with variations in port orientation, spray cone angle, and valve configuration (without and with a 180-degree shroud).
Technical Paper

Three-Dimensional Computations of Combustion in Premixed-Charge and Direct-Injected Two-Stroke Engines

1992-02-01
920425
Combustion and flow were calculated in a spark-ignited two-stroke crankcase-scavenged engine using a laminar and turbulent characteristic-time combustion submodel in the three-dimensional KIVA code. Both premixed-charge and fuel-injected cases were examined. A multi-cylinder engine simulation program was used to specify initial and boundary conditions for the computation of the scavenging process. A sensitivity study was conducted using the premixed-charge engine data. The influence of different port boundary conditions on the scavenging process was examined. At high delivery ratios, the results were insensitive to variations in the scavenging flow or residual fraction details. In this case, good agreement was obtained with the experimental data using an existing combustion submodel, previously validated in a four-stroke engine study.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

2012-04-16
2012-01-1101
This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Technical Paper

Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy

2017-03-28
2017-01-0728
For lean or dilute, boosted gasoline compression-ignition engines operating in a low-temperature combustion mode, creating a partially stratified fuel charge mixture prior to auto-ignition can be beneficial for reducing the heat-release rate (HRR) and the corresponding maximum rate of pressure rise. As a result, partial fuel stratification (PFS) can be used to increase load and/or efficiency without knock (i.e. without excessive ringing). In this work, a double direct-injection (D-DI) strategy is investigated for which the majority of the fuel is injected early in the intake stroke to create a relatively well-mixed background mixture, and the remaining fuel is injected in the latter part of the compression stroke to produce greater fuel stratification prior auto-ignition. Experiments were performed in a 1-liter single-cylinder engine modified for low-temperature gasoline combustion (LTGC) research.
Technical Paper

Ignition and Combustion Simulations of Spray-Guided SIDI Engine using Arrhenius Combustion with Spark-Energy Deposition Model

2012-04-16
2012-01-0147
An Arrhenius combustion model (chemically controlled model) with a spark-energy deposition model having a moving spherical ignition source in the Converge CFD code is validated with a single-cylinder spray-guided SIDI engine at idle-like lean-burn operating conditions with both single- and double-pulse fuel injection. It was found that a fine mesh is required for accurate solving of "laminar-flame" like reaction front propagation. A reduced chemistry mechanism for iso-octane is used as gasoline surrogate. The effects of spark advance were studied by the simulation and experiment. The results show that this modeling approach can provide reasonable predictions for the spray-guided SIDI engine with single- and double-pulse injections.
Technical Paper

A Hydrocarbon Autoignition Model for Knocking Combustion in SI Engines

1997-05-01
971672
The comprehensive engine simulation code, WAVE, is extended to include a knock sub-model. A hydrocarbon autoignition model based on a degenerate chain-branching mechanism that constitutes the basic kinetic framework was modified and coupled with WAVE's engine thermodynamic environment for this purpose. Making use of this modified hydrocarbon autoignition model and the flow based in-cylinder heat transfer model in WAVE, the original rapid compression machine (RCM) experiments of Shell can be reproduced reasonably well. In addition, a spatially and temporally resolved end-gas thermodynamic model was developed to allow a more accurate calculation of the end-gas temperature over the combustion chamber wall. The developed end-gas thermodynamic-driven knock model further assumes the existence of a pseudo-boundary-layer temperature profile which is linearly distributed between the unburned end-gas and the wall.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Particle Image Velocimetry Measurements in a High-Swirl Engine Used for Evaluation of Computational Fluid Dynamics Calculations

1995-10-01
952381
Two-dimensional in-cylinder velocity distributions measured with Particle Image Velocimetry were compared with computed results from Computational Fluid Dynamics codes. A high-swirl, two-valve, four-stroke transparent-combustion-chamber research engine was used. Comparisons were made of mean-flow velocity distributions, swirl-ratio evolution during the intake and compression strokes, and turbulence distributions at top-dead-center compression. This comparison with the measured flows led to more accurate calculations by identifying code improvements including swirl in the residual gas, modeling of the gas exchange during the valve overlap, and improved numerical accuracy.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
Technical Paper

Evaluation of Four Mixing Correlations for Performance and Soot-Emission Characteristics for a Small Open-Chamber Diesel Engine

1988-02-01
880599
A quasi-steady gas-jet model was applied to examine the spray penetration and deflection in swirling flow during the ignition-delay period in an open-chamber diesel engine timed to start combustion at top dead center. The input to the gas-jet model included measured values of ignition delay and mean fuel-injection velocity. Attempts were made to correlate measured fuel-consumption and soot-emissions data with mixing parameters based on calculated spray penetration and deflection. The engine parameters examined were piston-bowl geometry, compression ratio, speed, and overall air-fuel ratio. Four empirical correlations proposed in the literature were examined. The correlations, which were based on spray penetration and deflection in the swirl direction, represented overall degrees of fuel distribution in the combustion chamber and of utilization of the cylinder air.
X