Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of Advanced EuroSID-2 and EuroSID-2re Radioss Dummies

2010-04-12
2010-01-0215
EuroSID-2 and EuroSID-2re are among the most frequently used side impact dummies in vehicle crash safety. Radioss is one of most widely applied finite element codes for crash safety analysis. To meet the needs of crash safety analysis and to exploit the potential of the Radioss code, a new generation of EuroSID-2 (ES2) and EuroSID-2re (ES2_RE) Radioss dummies was developed at First Technology Safety System (FTSS) in collaboration with Altair. This paper describes in detail the development of the ES2/ES2_RE dummies. Firstly whole dummy meshes were created based on CAD data and intensive efforts were made to obtain penetration/intersection-free models. Secondly FTSS finite element certificate tests at component level were conducted to obtain satisfactory component performances. These tests include the head drop test, the neck pendulum test, the lumbar pendulum test and the thorax drop test [ 1 , 2 ].
Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Technical Paper

Dynamic Response and Mathematical Model of the Side Impact Dummy

1990-10-01
902321
A series of rigid wall tests have been conducted at three impact velocities to quantify the dynamic response of the Side Impact Dummy (SID) developed by US DOT. This paper reports the chest, pelvis and head responses of the dummy at various filter frequencies and describes the development and verification of the three-dimensional mathematical model of the Side Impact Dummy utilizing the rigid wall test results. The mathematical model uses the mass distribution and the linkage system of the current Part 572, Hybrid II dummy which forms the basic platform of the SID. The unique chest of the dummy is modeled by two systems of linkages simulating the rib cage and the jacket. Also included in the model is the internal hardware of the chest, e.g. a damper, rib stopper and a clavicle simulator at the upper spine. The material and linkage models are based on static and dynamic tests of the dummy components.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Air Bag Induced Injury Mechanisms for Infants in Rear Facing Child Restraints

1997-11-12
973296
The National Highway Traffic Safety Administration (NHTSA) Special Crash Investigations database contains twelve completed cases of child fatalities in rearward facing child seats caused by deploying air bags. Three of these are now available for examination. An additional two cases were investigated by the William Lehman Injury Research Center at the University of Miami School of Medicine. These five cases are examined to evaluate crash environment, injury mechanisms, and circumstances which caused the child to be in front of the passenger side air bag Four of the cases were crashes with impacts with the side of other cars with crash severities less than 15 mph. The predominate injury mechanism was brain and skull injury from a blow transmitted to the rear of the head through the child seat back. In one case, the force to the head was transmitted downward, directly from air bag contact.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Comparitive Evaluation of the Dynamic Responses of the Hybrid II and the Hybrid III Dummies

1990-10-01
902318
Two 50th percentile anthropomorphic test devices are specified as alternate test devices for FMVSS 208 compliance testing. These test devices are commonly known as the Hybrid II and the Hybrid III dummies. The designs of the two dummies are different, representing the state-of-the-art in the time frame of their designs. The trajectory differences between the two dummies have been published in the literature, but response differences, e.g., HIC and chest acceleration are not available in the literature. To quantify response differences between the two dummies, a series of sled tests with open bucks and with bucks simulating vehicle interior were conducted with restrained dummies. Additional crash tests were also conducted with the two dummies. This paper reports on an analysis of the data from the above series of tests. The data indicate that in non-head contact simulations with belt restraint systems, Hybrid III HIC's are nearly 50% higher than Hybrid II HIC's.
Technical Paper

Far-Side Impact Vehicle Simulations with MADYMO

2007-04-16
2007-01-0363
To date, anthropomorphic test devices (ATDs) have not been designed with consideration for human motion in far-side impacts. Previous tests with a cadaver and a BioSID dummy at the Medical College of Wisconsin confirmed that the dummy does not suitably model the human motion. To further evaluate different ATDs in far-side crashes, MAthematical DYnamic MOdeling (MADYMO) was employed. The modeling showed that the motion of a Hybrid III, BioSID, EuroSid1, EuroSID2, or SID2s did not accurately reflect the motion of a human cadaver under the same impact configurations as the cadaver test. The MADYMO human facet model was found to closely reproduce the kinematics of the cadaver test. The effect of varying console designs on occupant kinematics is presented in this paper. The human facet model appears to be a good interim tool for the evaluation of countermeasures in far-side crashes.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Development of Advanced Finite Element Models of World SID 5th and 50th — The Next Generation Side Impact Dummies

2007-04-16
2007-01-0891
This paper describes the development of new advanced Finite Element (FE) models of the World SID series, namely World SID 50th and 5th, the new generation of side impact Anthropomorphic Test Devices (ATD). The model development follows the FTSS's rigorous quality assurance (QA) procedure and uses the manufacture's product data and test facilities extensively. The models are validated at material, component & assembly, full dummy certification and sled test application levels. A detailed modeling methodology is described. The models correlate well with both the component and whole dummy level test results.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Technical Paper

New Method of Vehicle Inspection for Incompatible Crashes

2007-04-16
2007-01-1184
This paper creates a worksheet to thoroughly document vehicle damage during an incompatible vehicle-to-vehicle frontal crash. This data form serves as a supplement to the current and already established NASS inspection forms. It will assist biomechanics research by determining the extent by which incompatibility caused or changed occupants' injuries through structural analysis of the vehicles. This study identifies deficiencies in the current NASS inspection system for compatibility, and develops new measurable parameters to document the crash and associate injury to it.
Technical Paper

Crashworthiness Safety Features in Rollover Crashes

1998-09-29
982296
Rollover crashes continue to be a serious and growing vehicle safety problem. Rollovers account for about 9% of passenger car crashes, and 26% of light truck crashes. Belt use in rollover crashes is about 51%, compared with 62% in planar crashes. Overall, 26.4% of the serious and fatal injuries to occupants exposed to crashes are in rollovers. Among this injured population 74.4% are unbelted. In light trucks, rollovers account for 47.4% of the serious or fatal injuries. Unbelted occupants suffer about 87% of the serious injuries and fatalities in light truck rollovers. The use of safety belts offers a dramatic reduction in injury rates for rollover crashes. For belted occupants of pickup trucks and utility vehicles in rollover crashes, the injury rates are about the same as for belted occupants of passenger cars in planar crashes. Improvementsts in safety belts offer large opportunities in safety.
Technical Paper

Responses of the Q3, Hybrid III and a Three Year Old Child Finite Element Model Under a Simulated 213 Test

2008-04-14
2008-01-1121
This research focuses on the response of the Q3, Hybrid III 3-year-old dummy and a child finite element model in a simulated 213 sled test. The Q3 and Hybrid III 3-year old child finite element models were developed by First Technology Safety Systems. The 3-year-old child finite element model was developed by Nagoya University by model-based scaling from the AM50 (50 percentile male) total human model for safety. The child models were positioned in a forward facing, five-point child restraint system using Finite Element Model Builder. An acceleration pulse acquired from an experimental 213 sled test, which was completed following the guidelines outlined in the Federal Motor Vehicle Safety Standard 213 using a Hybrid III 3-year-old dummy, was applied to the seat buck supporting the child restraint seat. The numerical simulations utilizing the Q3, Hybrid III 3-year-old and the child finite element model were conducted using the explicit non-linear finite element code LS-DYNA.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Side Impact Risk for 7-13 Year Old Children

2008-04-14
2008-01-0192
The purpose of this paper is to assess the vehicle environment that a child occupant, between the ages of seven and thirteen years old, is exposed to in a real world crash. The focus of analysis is on those child occupants that are seated at the struck side in a lateral collision. This study was based on data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) between years 1991-2006. Analysis was based upon the evaluation of the projected consequence of injury to the child occupants. The societal costs generated as a result of occupant injuries were quantified. The societal cost, or Harm, acts as a measure of consequence of occupant exposure to the vehicle environment, when involved in a collision. The Harm was determined as a function of ΔV, principal direction of force, vehicle extent of damage, the pattern of damage to the vehicle, and the magnitude of intrusion based on the occupant seating position.
Technical Paper

Evaluating Frontal Crash Test Force-Deformation Data for Vehicle to Vehicle Frontal Crash Compatibility

2008-04-14
2008-01-0813
Vehicle stiffness is one of the three major factors in vehicle to vehicle compatibility in a frontal crash; the other two factors are vehicle mass and frontal geometry. Vehicle to vehicle compatibility in turn is an increasingly important topic due to the rapid change in the size and characteristics of the automotive fleet, particularly the increase of the percentage of trucks and SUVs. Due to the non-linear nature of the mechanics of vehicle structure, frontal stiffness is not a properly defined metric. This research is aimed at developing a well defined method to quantify frontal stiffness for vehicle-to-vehicle crash compatibility. The method to be developed should predict crash outcome and controlling the defined metric should improve the crash outcome. The criterion that is used to judge the aggressivity of a vehicle in this method is the amount of deformation caused to the vulnerable vehicles when crashed with the subject vehicle.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

Research and Development on the Modular Dummy Model

2009-01-21
2009-26-0056
The modular dummy model is a new concept to represent a crash dummy in computer simulation. The modular dummy model could be a solution with combination of acceptable responses and quick run times. The approach of the modular dummy model is to take an existing standard model and create rigid modules of all major dummy components (Head, Thorax, Pelvis, Femurs, Tibias, Feet, etc.), which are fully interchangeable between deformable and rigid modules. The special run time efficient component models for the neck and lumbar spine are also developed for the modular dummy. Mass and inertial properties of each rigid module are derived from the corresponding deformable part. The joint and connection definitions are shared between the rigid and deformable modules. The users only need to decide and select which modules should be used in order to achieve the best compromise between CPU time and accuracy for the specific application.
X