Refine Your Search

Topic

Author

Search Results

Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Technical Paper

Failure Prediction and Design Optimization of Exhaust Manifold based on CFD and FEM Analysis

2020-04-14
2020-01-1166
A thermo-mechanical fatigue analysis was conducted based on a coupled Finite Element Analysis (FEA) - Computational Fluid Dynamics (CFD) method on the crack failure of the exhaust manifold for an inline 4-cylinder turbo-charged diesel engine under the durability test. In the this analysis, the temperature-dependent material properties were obtained from measurements and the model was calibrated with comparison of the predicted exhaust manifold temperatures with the on-engine measurements under the same engine load condition. Temperature and stress/strain distributions in the exhaust manifold were predicted with the calibrated model. Analysis results showed that the cracks took place at locations with high plastic deformations, suggesting that the cause of the failure be thermo-mechanical fatigue (TMF). Using the equivalent plastic strain (PEEQ) as the indicator for thermal mechanical fatigue, three exhaust manifold design revisions were carried out by CAE analysis.
Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Development and Validation of a Forklift Truck Powertrain Simulation

2013-04-08
2013-01-0817
Fuel economy has become an important consideration in forklift truck design, particularly in Europe. A simulation of the fuel consumption and performance of a forklift truck has been developed, validated and subsequently used to determine the energy consumed by individual powertrain components during drive cycles. The truck used in this study has a rated lifting capacity of 2500kg, and is powered by a 2.6 litre naturally aspirated diesel engine with a fuel pump containing a mechanical variable-speed governor. The drivetrain consisted of a torque convertor, hydraulic clutch and single speed transmission. AVL Cruise was used to simulate the vehicle powertrain, with coupled Mathworks Simulink models used to simulate the hydraulic and control systems and governor. The vehicle has been simulated on several performance and fuel consumption drive cycles with the main focus being the VDI 2198 fuel consumption drive cycle.
Technical Paper

Fuel Injection Strategy for Reducing NOx Emissions from Heavy-Duty Diesel Engines Fueled with DME

2006-10-16
2006-01-3324
A new fuel injection strategy is proposed for DME engines. Under this strategy, a pre-injection up to 40% demand is conducted after intake valves closing. Due to high volatility of DME, a lean homogeneous mixture can be formed during the compression stroke. Near TDC, a pilot injection is conducted. Combined fuel mass for the pre-injection and pilot injection is under the lean combustion limit of DME. Thus, the mixture is enriched and combustion can take place only in the neighborhood of sprays of the pilot injection. The main injection is conducted after TDC. Because only about half of the demand needs to be injected and DME evaporates almost immediately, combustion duration for the main injection plus the unburnt fuel in the cylinder should not be long because a large portion of the fuel has been premixed with air. With a high EGR rate and proper timing for the main injection, low temperature combustion could be realized.
Journal Article

Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs

2012-09-24
2012-01-2017
Battery packs for plug-in hybrid electrical vehicle (PHEV) applications can be characterized as high-capacity and high-power packs. For PHEV battery packs, their power and electrical-energy capacities are determined by the range of the electrical-energy-driven operation and the required vehicle drive power. PHEV packs often employ high-power lithium-ion (Li-ion) pouch cells with large cell capacity in order to achieve high packing efficiency. Lithium-ion battery packs for PHEV applications generally have a 96SnP configuration, where S is for cells in series, P is for cells in parallel, and n = 1, 2 or 3. Two PHEV battery packs with 355V nominal voltage and 25-kWh nominal energy capacity are studied. The first pack is assembled with 96 70Ah high-power Li-ion pouch cells in 96S1P configuration. The second pack is assembled with 192 35Ah high-power Li-ion pouch cells in 96S2P configuration.
Technical Paper

Fuel Chemistry Impacts on Gasoline HCCI Combustion with Negative Valve Overlap and Direct Injection

2007-10-29
2007-01-4105
Homogeneous Charge Compression Ignition (HCCI) combustion has the potential to produce low NOx and low particulate matter (PM) emissions while providing high efficiency. In HCCI combustion, the start of auto-ignition of premixed fuel and air depends on temperature, pressure, concentration history during the compression stroke, and the unique reaction kinetics of the fuel/air mixture. For these reasons, the choice of fuel has a significant impact on both engine design and control strategies. In this paper, ten (10) gasoline-like testing fuels, statistically representative of blends of four blending streams that spanned the ranges of selected fuel properties, were tested in a single cylinder engine equipped with a hydraulic variable valve train (VVT) and gasoline direct injection (GDI) system.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines

2007-04-16
2007-01-0537
Waste heat from a heavy-duty truck diesel engine is analyzed employing the first and second law of thermodynamics. A hybrid energy system is proposed, with the diesel cycle being hybridized with an organic Rankine cycle for waste heat recovery (ORC-WHR). The charge air cooler and EGR cooler(s) are integrated in the ORC loop as pre-heaters and the ORC working fluid serves as the coolant for these coolers. A supercritical reciprocating Rankine engine is proposed, which avoids using the high-cost evaporator and is easier for the system packaging. It is demonstrated in a case study that up to 20 % of waste heat from the heavy-duty diesel engine may be recovered by the supercritical ORC-WHR system, making the efficiency for the hybrid energy system be ≥ 50%. Discussion on working fluids for the WHR-ORC system is covered in Part II of this paper.
Technical Paper

Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part II: Working Fluids for WHR-ORC

2007-04-16
2007-01-0543
In Part I of this paper, the organic Rankine cycle for waste heat recovery (ORC-WHR) from the heavy-duty diesel truck engines was discussed. This work is Part II of the paper. The efficiency of the ORC-WHR system varies considerably with thermodynamic properties of the working fluid. In this work, characteristics of candidate working fluids are discussed on the basis of the thermodynamic theory. The discussion covers inorganic and organic fluids for both pure fluids and binary-mixture fluids. On the basis of the characteristics of the working fluids, the thermal efficiency for the ORC-WHR system is analyzed. Discussions and conclusions of this paper are helpful in selecting proper working fluids for the ORC-WHR system and determining a proper temperature range for system operations.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

Emission Formation Mechanisms in a Two-Stroke Direct-Injection Engine

1998-10-19
982697
Engine tests were conducted to study the effect of fuel-air mixture preparation on the combustion and emission performance of a two-stroke direct-injection engine. The in-cylinder mixture distribution was altered by changing the injection system, injection timing, and by substituting the air in an air-assisted injector with nitrogen. Two injection systems which produce significantly different mixtures were investigated; an air-assisted injector with a highly atomized spray, and a single-fluid high pressure-swirl injector with a dense penetrating spray. The engine was operated at overall A/F ratios of 30:1, where stratification was necessary to ensure stable combustion; and at 20:1 and 15:1 where it was possible to operate in a nearly homogeneous mode. Moderate engine speeds and loads were investigated. The effects of the burning-zone A/F ratio were isolated by using nitrogen as the working fluid in the air-assist injector.
Technical Paper

Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection

2009-10-06
2009-01-2913
The fuel saving benefit is analyzed for a class-8 truck diesel engine equipped with a WHR system, which recovers the waste heat from the EGR. With this EGR-WHR system, the composite fuel savings over the ESC 13-mode test is up to 5%. The fuel economy benefit can be further improved if the charge air cooling is also integrated in the Rankine cycle loop. The influence of working fluid properties on the WHR efficiency is studied by operating the Rankine cycle with two different working fluids, R245fa and ethanol. The two working fluids are compared in the temperature-entropy and enthalpy-entropy diagrams for both subcritical and supercritical cycles. For R245fa, the subcritical cycle shows advantages over the supercritical cycle. For ethanol, the supercritical cycle has better performance than the subcritical cycle. The comparison indicates that ethanol can be an alternative for R245fa.
Technical Paper

CAE Process for Developing Cylinder Head Design Including Statistical Correlation and Shape Optimization

2010-04-12
2010-01-0494
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
Technical Paper

Physicochemical Characteristics of Soot Deposits in EGR Coolers

2010-04-12
2010-01-0730
Physicochemical characteristics of the soot deposits in a fouled EGR cooler are studied in this paper. It is found that a three-layer model for the soot deposited in the EGR cooler may well describe the behavior of the depositing process: a dense base layer with micro pores (≺ 5 nm), a randomly packed intermediate layer with meso pores (5-50 nm) and a loose surface layer with macro pores (≻ 50 nm). The surface layer is thick and highly porous, formed by mechanical interlocking of the agglomerated primary soot particles or soot clusters. The soot particles in the surface layer may be removed by a high shear EGR flow. Condensates in the deposit, especially water, can have a significant influence on the structure of the deposit. Capillary forces on the wetted soot particles could be comparable to the contact forces holding the particles together. It is found that the hydroscopicity of the soot particles vary with their content of soluble organic fraction (SOF).
Technical Paper

Characterization of the Dynamic Response of a Cylinder Deactivation Valvetrain System

2001-03-05
2001-01-0669
This paper presents a theoretical and experimental study of a cylinder deactivation valvetrain system for the integration into an Engine Management System (EMS). A control-oriented lumped parameter model of the deactivation valvetrain system is developed and implemented using Matlab/Simulink, and validated by experimental data. Through simulation and experimental data analysis, the effect of operating conditions on the dynamic response is captured and characterized, over a wide range of operating conditions. The algorithm provides a basis for the calibration of the deactivation hardware. The generic characterization of the dynamic response can simplify the calibration parameters for the implementation in engine management systems.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
X