Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Journal Article

Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays

2015-09-01
2015-01-1873
Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

Experimental Analysis of the Impact of Injected Biofuels on In-Cylinder Flow Structures

2016-05-18
2016-01-9043
The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Cylinder-to-Cylinder Variations in Power Production in a Dual Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

2016-04-05
2016-01-0776
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
Technical Paper

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

2020-04-14
2020-01-0616
A 500-hour test cycle has been used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the original diesel based hardware design were optimized in order to accommodate an opposed-piston, two-stroke engine application and also to mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved and no physical damage was observed in the low-pressure components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle spray holes and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Technical Paper

Fuel Property Effects on Spray Atomization Process in Gasoline Direct Injection

2020-04-14
2020-01-0329
This paper presents a computational fluid dynamics (CFD) study of the Engine Combustion Network (ECN) Spray G under non-vaporizing condition, focusing on the impacts of fuel properties as well as realistic geometry on the atomization process. The large-eddy-simulation method, coupled with the volume-of-fluid method, is used to model the high-speed turbulent two-phase flow. A moving-needle boundary condition is applied to capture the internal flow boundary condition accurately. The injector geometry was measured with micron-level resolution using x-ray tomographic imaging at the Advanced Photon Source at Argonne National Laboratory, providing detailed machining tolerance and defects from manufacturing and a realistic rough surface. A 2.5-μm fine mesh is used to sufficiently resolve the details of liquid-gas interface and the breakup process.
Journal Article

Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

2016-10-17
2016-01-2293
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas.
Journal Article

Fabrication and Characterization of Micro-Orifices for Diesel Fuel Injectors

2008-06-23
2008-01-1595
Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 μm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.
Journal Article

Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Electric Vehicles in the United States

2013-04-08
2013-01-1283
While electric vehicles including plug-in hybrid electric vehicles (PHEVs) and battery-powered electric vehicles (BEVs) are considered as promising alternative vehicle/fuel systems to significantly reduce petroleum consumption of the transportation sector, it is important to analyze the emission characteristics and to assess the emission reduction potentials of electric vehicles so that their environmental impacts in terms of climate change, air quality, as well as human health effects could be better understood. To fulfill this objective, we explicitly analyzed the emission characteristics of greenhouse gases (GHG) and criteria air pollutants (CAP, representing VOC, CO, NOx, PM₁₀ and PM₂.₅, and SOx,) of the U.S. power sector, a pivotal upstream sector that impacts the life-cycle GHG and CAP emissions associated with electric vehicles.
Journal Article

Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine

2018-04-03
2018-01-0171
Direct injection (DI) of compressed natural gas (CNG) is a promising technology to increase the indicated thermal efficiency of internal combustion engines (ICE) while reducing exhaust emissions and using a relatively low-cost fuel. However, design and analysis of DI-CNG engines are challenging because supersonic gas jet emerging from the DI injector results in a very complex in-cylinder flow field containing shocks and discontinuities affecting the fuel-air mixing. In this article, numerical simulations are used supported by validation to investigate the direct gas injection and its influence on the flow field and mixing in an optically accessible ICE. The simulation approach involves computation of the in-nozzle flow with highly accurate Large-Eddy Simulations, which are then used to obtain a mapped boundary condition. The boundary condition is applied in Unsteady Reynolds Averaged Navier-Stokes simulations of the engine to investigate the in-cylinder velocity and mixing fields.
X