Refine Your Search

Topic

Search Results

Technical Paper

The Effect of HIP Processing on the Properties of A356 T6 Cast Aluminum Steering Knuckles

2004-03-08
2004-01-1027
Hot Isostatic Pressing (HIP) has been routinely used to densify castings for aerospace and medical applications for over 30 years. While HIP is widely known to improve the toughness and fatigue life of castings through the healing of internal porosity, it has been perceived as too expensive for most cast aluminum alloys for automotive applications. Recent developments suggest that the cost effectiveness of certain special HIP processes should be revisited due to reductions in process cost and improvements in throughput. This paper will evaluate the Densal® II process applied to a front aluminum steering knuckle. Two casting processes representing differing levels of relative cost and quality were evaluated. The first was Alcoa's VRC/PRC process, a metal mold process with bottom fill, evacuation before fill and pressurization after fill. This is considered to be a premium quality, but higher cost casting process that is already qualified for this application.
Technical Paper

Reliability-Based Fatigue Strength Testing by the Staircase Method

2004-03-08
2004-01-1288
The staircase fatigue testing method is a recognized method for determining the fatigue limit of powertrain components. The purpose of this paper is to improve upon existing standards by adding common practices that will ensure a higher degree of statistical accuracy in the data. This includes specifying appropriate sample sizes, stress increments and initial load conditions, as well as making suggestions for appropriate methods of analyzing the data. Two methods (Dixon and Mood method and probit analysis method) are selected and compared in terms of relative percent difference on four parameters (mean, standard deviation, B10 fatigue strength and B50 fatigue strength). The staircase data are obtained by simulations from normal and lognormal fatigue limit distributions.
Technical Paper

Pump Noise Reduction Using Shainin Statistical Engineering Methods

2001-04-30
2001-01-1542
Historically, pump noise can be a contributor to customer dissatisfaction with automatic transmissions. In this paper, a Shainin experiment was conducted to identify all probable root causes for pump noise on a production RWD transmission. Sample transmissions were selected following subjective evaluations. Noise was objectively measured in the lab using a microphone and an accelerometer. The study was conducted following a systematic Shainin statistical engineering methodology, which included the following major steps: selection of the test measure using the isoplot technique, selection of Best of Best (BOB) and Worst of Worst (WOW) transmissions, assessment of assembly variation, component search, and pair-wise comparisons. The study successfully highlighted the key variables on the drive gear involute profile, which are now being tightly controlled for improved noise characteristics.
Technical Paper

Vehicle Powertrain Loading Simulation and Variability

2004-03-08
2004-01-1563
In this paper, loads acting on driveline components during an entire proving ground (PG) durability schedule are used to demonstrate the methodology of optimizing driveline performance reliability using both physical and computational methods. It is well known that there is an effect of driver variability on the driveline component loads. Yet, this effect has not been quantified in the past for lack of experimental data from multiple drivers and reliable data analysis methods. This paper presents the data reduction techniques that are used to identify the extreme driver performance and to extrapolate the short-term measurement to long-term data for driveline performance reliability. The driveline loading variability is made evident in the rotating moment histogram domain. This paper also introduces the concept for a simulation model to predict the driveline component loads based on a complete proving grounds schedule. A model-to-test correlation is also performed in this paper.
Technical Paper

Methodology for Vehicle Box Component Durability Test Development

2004-03-08
2004-01-1690
During the initial vehicle design phase and as the first prototypes are built, extensive on-board instrumentation and data acquisition is required at the proving grounds (PG). The data is used for various types of testing and analysis. During this phase of development very few parts and assembly components are available for physical test. The objective is to develop a component test for the truck box. This test can be run without suspension parts during the early stages of the vehicle development. A further objective is to correlate the test to FEA models and actual Proving Ground full vehicle test results.
Technical Paper

Design and Development of the DaimlerChrysler 5.7L HEMI® Engine Multi-Displacement Cylinder Deactivation System

2004-05-07
2004-01-2106
Cylinder deactivation is a means of improving the fuel economy of gasoline engines. This paper covers the application of the technology to a V8 engine and implementation into vehicles. The description of the engine hardware and its operation are discussed. The engine and transmission control strategy are described, including an example of the compensation strategies to smooth the transition between the different modes of engine operation. The powertrain and chassis hardware changes required to address the noise vibration and harshness issues are discussed and examples of untuned systems are shown.
Technical Paper

Correlation of CMM Data with Flexible Fixturing

2001-10-16
2001-01-3066
To correlate data collected at multiple sites when using flexible fixturing to position parts for a CMM (Coordinate Measurement Machine), there are additional factors to consider and coordinate than when using CMM Holding Fixtures.
Technical Paper

Stamping and Crush Performance of Dual Phase Steel

2001-10-16
2001-01-3074
Traditionally, high-strength low-alloy (HSLA) steel is used for automotive vehicle weight reduction in the North American automotive industry. Dual phase (DP) high strength steel has gained great attention because it provides a combination of high strength and good formability. The main advantage of DP steel is the high ratio of tensile strength to yield strength, which provides more flexibility in stamping and higher energy absorption in a component crush event. This study compares the performances of DP and HSLA steel grades in stamping processes and component crush events, as shown in a typical automotive unibody inner rail. Simulation results show that DP steel offers more uniform strain distribution, improved formability, and better crush performance than conventional HSLA steel.
Technical Paper

Torque Converter CFD Engineering Part II: Performance Improvement through Core Leakage Flow and Cavitation Control

2002-03-04
2002-01-0884
The performance of a large-volume production torque converter is slightly different from those of development prototype due to the core leakage flow. The sealing gap between the stator crown and pump or turbine core of the production converter is usually larger than that of prototypes because of fabrication method and tolerances. In this work, the core leakage flow of torque converter was investigated using CFD. The core region was modeled and coupled together with other three major components of a converter. Studies show that for a particular converter the core leakage flow could result in a 3.6% stall torque ratio reduction and a 2% peak efficiency decrease. The effects of sealing gap dimensions were also studied. Computational investigations in this work indicated that the variation of input K factor with input torque level observed in dyno tests is due to the cavitation in the torque converter.
Technical Paper

Torque Converter CFD Engineering Part I: Torque Ratio and K Factor Improvement Through Stator Modifications

2002-03-04
2002-01-0883
To improve vehicle launch feeling, the powertrain torque output needs to be largely increased. Compared with modifications to engine, transmission, and axle, one of the most inexpensive ways of achieving this goal is to modify the torque converter to get a higher stall torque ratio. In other applications, in order to lower engine speed for better fuel economy, and to match with a higher output engine, a converter with higher torque capacity (lower K factor) is also often desired. In some case of small-volume production, the torque converter modifications are limited to the stator only in order to reduce the manufacturing cost. In the present study, the engineering CFD simulations were used to develop new stators for stall torque ratio and K factor improvement. The flow fields of both baseline and modified torque converters were simulated. The overall performances of the converter were calculated from the flow field data, and correlated with the dyno test data.
Technical Paper

Prediction of Draw Bead Coefficient of Friction Using Surface Temperature

2002-03-04
2002-01-1059
Sheet metal stamping involves a system of complex tribological (friction, lubrication, and wear), heat transfer, and material strain interactions. Accurate coefficient of friction, strain, and lubrication regime data is required to allow proper modeling of the various sheet stamping processes. In addition, non-intrusive means of monitoring the coefficient of friction in production stamping operations would be of assistance for efficiently maintaining proper stamping quality and to indicate when adjustments to the various stamping parameters, including maintenance, would be advantageous. One of the key sub-systems of the sheet metal stamping process is the draw bead. This paper presents an investigation of the tribology of the draw bead using a Draw Bead Simulator (DBS) Machine and automotive zinc-coated sheet steels. The investigation and findings include: 1) A new, non-intrusive method of measuring the surface temperature of the sheet steel as it passes through the draw bead.
Technical Paper

Semiconductor Gas Sensors as Control Monitors for NOx Storage Catalytic Converters

2002-03-04
2002-01-1095
Silicon Carbide (SiC) based high temperature semiconductor gas sensors were tested for potential applications in the closed-loop control of NOx storage catalytic converters. The exhaust gas composition behind a storage catalyst was simulated by synthetic gas mixtures supplied from a gas blending manifold. In lean oxidizing ambients the sensors produced signals opposite in sign upon the appearance of NOx on the one hand and mixtures of HC and CO on the other hand. Transient gas measurements revealed response times ranging between several milliseconds for HC and several seconds for NOx. These features render SiC based sensors potentially useful for the control of NOx storage catalytic converters.
Technical Paper

CFD Simulation of Connecting Rod Bearing Lubrication

2003-03-03
2003-01-0924
Modern engines are designed to operate at highly rated engine speed and load, which brings up challenges to the lubrication design of main and connecting rod bearings. Damages could occur on rod bearings due to high-speed relative sliding motion. Expensive cross drillings are often seen in today's engineering practice to ensure adequate lubrication in rod bearings. The objective of this study is to establish a methodology for predicting lubrication flows in rod bearings and use it to guide the engineering design. The high-speed nature of the crankshaft makes it difficult to acquire experimental data during its normal operation for better understanding the flow inside rod bearings and oil circuits. In the present study, the commercial CFD code, FLUENT, has been used to evaluate the flow characteristics within the rod bearings and oil passages connecting main bearing to rod bearing.
Technical Paper

Design Kit for Accessory Drives (DKAD): Dynamic Analysis of Serpentine Belt Drives

2003-05-05
2003-01-1661
DKAD is an automated analysis tool for evaluating dynamic characteristics of accessory drives. Rotation response analysis predicts natural frequencies and effects of crankshaft excitation. Lateral response of each belt span shows the effect of pulley run-out and parametric excitation. DKAD systematically allows a user to define a design and its operating conditions and then performs a sequence of analysis to visualize the rotational and lateral responses. It also allows a user to quickly explore and assess alternative designs. Belt layout and associated parameters can be saved in templates for future reference.
Technical Paper

Drivetrain Torsional and Bending Vibration for a RWD Vehicle Interior Noise Development

2003-05-05
2003-01-1496
In a vehicle NVH development and refinement phase, it is necessary to understand the source of the noise and vibration from various powertrain and drivetrain mechanisms. The noise and vibration generated by a drivetrain in a vehicle is a complicate but significant source of physical mechanism, which might become important issues in early or later phase of the vehicle development. For the diagnostic purpose of the drivetrain, a rear-wheel drive (RWD) vehicle in early development phase has been used to measure the bending and torsional vibration of the drivetrain, as well as the vehicle interior noise simultaneously, while the vehicle is running up and down under quasi-steady state on a chassis dynamometer. The lower frequency resonances of torsional and bending vibrations from the drivetrain are correlated with the vehicle interior boom or overall loudness.
Technical Paper

Advances in Thixomolding Magnesium Alloys Part II

2003-03-03
2003-01-0181
Thixomolding (1) is a relatively new process in which the metallic slurry is injected into a die cavity tool at semi-solid or liquid temperatures to form near net-shape products from the solid feedstock. As part of on-going research into Thixomolding technology, this study continues the work of a previous study, that concentrated on magnesium alloys AZ91D and AM60B. The test samples were made with high, low and zero percent fraction solid. The test results of the thixomolded samples of the various percent fraction solid are compared to conventional high pressure die casting samples and there is a discussion of the why the Thixomolding process produces superior properties. In addition, a comprehensive corrosion resistance study was completed utilizing uncoated corrosion plates in an salt spray environment (ASTM B117).
Technical Paper

Optimization of Accessory Drive System of the V6 Engine Using Computer Simulation and Dynamic Measurements

2005-05-16
2005-01-2458
At the initial accessory drive system design stage, a model was created using commercial CAE software to predict the dynamic response of the pulleys, tensioner motion and pulley slip. In a typical 6 cylinder automotive accessory drive systems, the first system torsional mode is near the engine idle speed. The combination of these two events could generate numerous undesirable noise and vibration effects in the system. Data acquisition on a firing engine with a powertrain dynamometer confirmed the computer model's results. Correlations are then developed and established based on results between the firing engine to the CAE model to increase confidence in the generated model. Further system optimization through design modifications are used to tune the system to minimize the overall system dynamics.
Technical Paper

Springback of Sheet Metal Subjected to Multiple Bending-Unbending Cycles

2000-03-06
2000-01-1112
A Draw Bead Simulator (DBS), with modified draw beads, was employed in this study to understand the springback behavior of sheet metal subjected to multiple bending-unbending cycles. The investigations were carried out in both the rolling and the transverse rolling directions on four types of materials: Electro-Galvanized DQ steel, light and heavy gauge Hot-Dip Galvanealed High Strength Steels, and Aluminum alloy AL6111. The sheet geometries, thickness strains, pulling forces and clamping forces were measured and analyzed for the purpose of establishing a benchmark database for numerical predictions of springback. The results indicate that the springback curvature changes dramatically with the die holding force. The conditions at which the springback is minimized was observed and found to depend on the material properties and the sheet thickness. Analysis with an implicit FEM showed that the predicted and the experimental results are in very good agreement.
Technical Paper

Simulating the Die Gap Effect on Springback Behavior in Stamping Processes

2000-03-06
2000-01-1111
The springback behavior might be different due to different gap clearances between die and punch. A study using FEA simulation is done to investigate the die gap effect. A 3D brick element and an explicit-implicit method are employed to investigate a few simple problems. A draw form, a crash form with an upper pad and a flange form are investigated separately. Numisheet’93 2D draw bending springback problem is also investigated using an explicit dynamic code. Comparisons between springback simulation results on several different die gaps are illustrated. The Kirchhoff assumption of C° shell element and the Mindlin/Love assumption of thin shell element are also examined on different cases. A case study then is performed on a rail type panel. Conclusions and recommendations for future studies are summarized.
Technical Paper

A Thermoplastic Approach to a Composite Automotive Body

1999-09-28
1999-01-3222
This paper will provide an overview of the need, requirements, and constraints governing the development and application of polymer composites in automotive body components. It will discuss the efforts underway to lead and support the technology developments required for the cost-effective application of these new materials in mass-produced vehicles. The requirements and constraints of customer-driven, mass-produced, energy-efficient vehicles with uncompromised cost, capacity and performance, drive careful consideration of an injection-molded thermoplastic approach to a composite automotive body. Recent progress with this approach will be reported and some next steps examined.
X