Refine Your Search

Topic

Search Results

Technical Paper

Development Testing of High Temperature Bearings for SP-100 Control Drive Assemblies

1992-08-03
929234
Initial preliminary development phases of two distinct SP-100 control drive assembly bearing test programs were successfully completed at elevated temperature in vacuum. The first was for the reflector drive line spherical self-aligning bearings. Each bearing consisted of a carbon-graphite ball mounted on an aluminum oxide-coated Ta-10%W shaft, captured by an aluminum oxide-coated Ta-10%W socket. One set of these bearings was exposed to temperatures up to 1180K (1665°F) at 1.33x10-6 Pa (1x10-8 torr) and subjected to 38000 cycles of motion. Friction coefficients were found to be between 0.11 and 0.25 over the full range of operation. Overall performance of the bearings was excellent, with only slight wear observed. The second test program was for the safety rod slider bearing. Zirconium carbide coated Nb-1%Zr bearing pads were stroked inside a molybdenum tube at temperatures up to 1422K (2100°F) at ∼1.33x10-6 Pa with a normal load of 1.02 Kg between each sliding surface.
Technical Paper

SP-100 Position Multiplexer and Analog Input Processor

1992-08-03
929233
This paper describes the design, implementation, and performance test results of an engineering model of the Position Multiplexer (MUX)-Analog Input Processor (AIP) System for the transmission and continuous measurements of Reflector Control Drive position in SP-100. The specially tailored MUX-AIP combination multiplexes the sensor signals and provides an increase in immunity from low frequency interference by translating the signals up to a higher frequency band. The modulated multiplexed signals are transmitted over a single twisted shielded cable pair from the reflector drives located near reactor to the AIP located at the power conditioning/system controller end of the space craft boom. There the signals are demultiplexed and processed by the AIP, eliminating the need for individual cables for each of the twelve position sensors across the boom.
Technical Paper

Progress in SP-100 Tribological Coatings

1992-08-03
929235
The SP-100 reactor will operate at temperatures up to 1500K in high vacuum. Development of bearing coatings is necessary to avoid self welding and/or galling of moving components. No experience base exists for these conditions-the early SNAP (Space Nuclear Auxiliary Power) program requirements were over 400K lower with shorter lifetime requirements. To address the SP-100 needs, a tribology development program has been established at GE to investigate candidate coating materials. Materials were selected based on their high thermodynamic stability, high melting point, compatibility with the substrate, and coefficients of thermal expansion similar to niobium-1% zirconium - the candidate structural material for SP-100. An additional requirement was that the deposition processes should be commercially available to coat large components.
Technical Paper

SP-100 Initial Startup and Restart Control Strategy

1992-08-03
929231
Recent Generic Flight System (GFS) updates have necessitated revisions in the initial startup and restart control strategies. The design changes that have had the most impact on the control strategies are the addition of the Auxiliary Cooling and Thaw (ACT) system for preheating the lithium filled components, changes in the reactivity worths of the reflectors and safety-rods such that initial cold criticality is achieved with only a small amount of reflector movement following the withdrawal of the safety-rods, and the removal of the scram function from the reflectors. Revised control and operating strategies have been developed and tested using the SP-100 dynamic simulation model, ARIES-GFS. The change in the total reactivity worths of the reflectors and safety-rods has eliminated the need for the use of fast and slow reflector drive speeds during the initial on-orbit approach to criticality.
Technical Paper

SP-100 Space Reactor Power System Readiness

1992-08-03
929308
The SP-100 Space Reactor Power System is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). An effective infrastructure of Industry, National Laboratories and Government agencies has made substantial progress since the 1988 System Design Review. Hardware development and testing has progressed to the point of resolving all key technical feasibility issues. The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety, performance, reliability and life requirements.
Technical Paper

SP-100 Nuclear Subsystem Hardware and Testing

1992-08-03
929309
The term “SP-100” is synonymous with a set of technologies that can be utilized to provide long lifetime, reliable, safe space power over the range of kilowatts to megawatts [1] using a nuclear reactor as the heat source. This paper describes recent development progress in a number of technology areas such as fuel, materials, reactivity control mechanisms and sensors. Without exception, excellent technical progress is being accomplished in all areas under development to optimize spacecraft performance characteristics.
Technical Paper

SP-100 Technology Scales from Kilowatts to Megawatts

1992-08-03
929230
System level design studies of space applications ranging in power from 77 kWt to 200 MWt have indicated no practical limit to the thermal power that can be reliably generated by a space reactor system based on the technologies being developed in the SP-100 program. These technologies include uranium nitride fuel, PWC-11/rhenium bonded fuel cladding, PWC-11 structural material for the lithium coolant boundary, electromagnetic coolant pumps, safety and reactivity control drive mechanisms, sensors, shielding materials, etc. at operating temperatures up to 1400K. The physical arrangements and characteristics of the nuclear reactor materials are described. The physical size of components and the arrangement of components change, but the basic technologies required are generally the same, irrespective of the total power output.
Technical Paper

Interplanetary and Lunar Surface SP-100 Nuclear Power Applications

1992-08-03
929445
This paper describes how the SP-100 Space Reactor Power System (SRPS) can be tailored to meet the specific requirements for a lunar surface power system to meet the needs of the consolidation and utilization phases outlined in the 90-day NASA SEI study report. This same basic power system can also be configured to obtain the low specific masses needed to enable robotic interplanetary science missions employing Nuclear Electric Propulsion (NEP). In both cases it is shown that the SP-100 SRPS can meet the specific requirements. For interplanetary NEP missions, performance upgrades currently being developed in the area of light weight radiators and improved thermoelectric material are assumed to be technology ready in the year 2000 time frame. For lunar applications, some system rearrangement and enclosure of critical components are necessary modifications to the present baseline design.
Technical Paper

Initial Testing of a 250 KW Starter/Generator for Aircraft Applications

1994-04-01
941160
The work reported in this paper has been conducted by a team from GE-Aircraft Engines, GE-CR&D, and Sundstrand under a contract sponsored by the USAF, Wright Laboratories, WPAFB, Contract No. F33615-90-C-2052. The objective of this contract is to prove the feasibility of an Integral Starter/Generator (IS/G) through the preliminary design stage and demonstrate the starter/ generator technology in the externally mounted version utilizing switched reluctance machine technology. This paper will report on the progress for the EIS/G-system through the initial testing stage. Comparison of the finished hardware with the design results presented earlier will lead of the paper. This is followed by the discussion of the early testing results for the system testing. Recommendation on additional testing will be presented at the end of the paper.
Technical Paper

Inspection of Turbine Blades Using Computer Aided Laser Technology

1980-09-01
801173
Measurement of dimensional characteristics of airfoil parts is primarily a manual, labor intensive operation. It employs a wide variety of gages that vary from very expensive optical comparitors to inexpensive pin gages. An automatic non-contacting inspection gage capable of measuring most dimensional characteristics would be cost effective, simplify inspection operations, consolidate a number of gages into one, and improve overall inspection reliability by minimizing human involvement. This paper presents the results of the design and development of a demonstrator semi-automatic laser gage dimensional inspection system that addresses this problem.
Technical Paper

Development of a Hydromechanical Steering Transmission

1972-02-01
720726
The advantages of infinitely variable ratio steering and propulsion for track laying vehicles are well known. Studies and demonstrator programs in the past decade have indicated that the hydromechanical transmission has the most promise of providing infinitely variable ratio for military vehicles. In 1966 the Army launched a program to develop the hydromechanical transmission to “production ready” status. This paper describes that program, the transmission selected, and some of the problems encountered in the transition from the demonstrator stage to one of readiness for military application.
Technical Paper

Transmission Considerations for Gas Turbines

1972-02-01
720169
The effects of transmission selection on the performance and fuel economy of a gas turbine powered automobile are analyzed. Both single-shaft and two-shaft turbines are considered. Examples are given of fuel economy for an urban cycle, and performance of these engines with an infinitely variable transmission and with a power shift automatic transmission. The primary conclusions are that the infinitely variable transmission is necessary for a single-shaft engine and highly desirable for a two-shaft engine, and the use of an infinitely variable transmission with the single-shaft turbine eliminates any need for the wider output speed range of a two-shaft engine.
Technical Paper

Quiet Clean Short-Haul Experimental Engine (QCSEE) Design Rationale

1975-02-01
750605
The principal design features of the NASA QCSEE UnderThe-Wing and Over-The-Wing powered lift propulsion systems are given. In the UTW engine, these include noise reduction features, a variable pitch low pressure ratio fan, a fan drive reduction gear, an advanced core and low pressure turbine with a low pollution combustor, a digital control, and advanced composite construction for the inlet, fan frame, fan exhaust duct, and variable area fan exhaust nozzle. The OTW engine is similar but has higher fan pressure and a fixed pitch fan. Both engines are scheduled to be fabricated and tested starting in 1976.
Technical Paper

Development of Hot-Isostatically Pressed and Forged P/M Rene 95 for Turbine Disc Application

1974-02-01
740862
Previous studies had demonstrated the economic and technical feasibility of producing high-quality forgings for aircraft turbine engine parts from hot-isostatically pressed (HIP) Rene 95 powder billets. The present program was aimed at developing a production practice for making HIP + forged turbine discs. The major goal was improved product fabricability and reliability with minimum cost. The program was conducted using argon atomized Rene 95 powder. Experimental studies were conducted to evaluate the effect of powder characteristics, HIP parameters, preform design, and forging conditions on forgeability, microstructure, and mechanical properties. The results of these studies were incorporated into a pilot production run in which 10 disc forgings were made and evaluated. The selected process involved the consolidation of -60 mesh powder to full density by hot-isostatic pressing at a temperature above the γ' solvus temperature.
Technical Paper

Acoustic Design and Performance of Turbojet Test Facilities

1955-01-01
550252
THE high noise level associated with turbojet testing creates two noise problems: 1. The reduction of noise in the neighborhood of the installation to an acceptable level. 2. The protection of operating personnel from excessive noise. Desirable sound levels are established and, on the basis of these levels, specifications are written for the acoustic treatment of the turbojet facilities. The acoustic treatment must not only be satisfactory from the point of view of noise reduction, but it must also be able to withstand the very rigorous operating conditions. High-temperature and high-velocity flow of gases through the exhaust stack makes for these rigorous conditions. Designs which meet these specifications are discussed in this paper, together with performance data obtained on these designs.
Technical Paper

ORION A Gas-Generator Turbocompound Engine

1957-01-01
570028
THE “Orion” gas-generator turbocompound engine consists of a supercharged, regenerative aircooled, 2-stroke-cycle opposed-piston diesel engine driving two centrifugal compressors. One of these compressors is for combustion air with fine air filtration, while the other is for cylinder cooling with much less filtration. The gas-generator engine has a bore of 4¼-in. diameter and a stroke of 5⅞ in. × 2. The engine turns at 2340 rpm, and the combustion air compressor turns at 37,000 rpm while the cooling air compressor turns 17,000 rpm. The cylinder is cooled with air at nearly the supercharge level and at an equivalent temperature because this air later does work on the turbine. The cooling airflow is about 3½ times the combustion airflow. These two airstreams join in a plenum chamber downstream from the engine, and the mixture temperature is about 500 F. This hot gas stream then goes to the power turbine, which is mechanically free of the gas generator.
Technical Paper

Diesel Cylinder Heat Transfer Design Criteria

1958-01-01
580053
THE problem of this study was: 1. Can a method of analysis be found which adequately predicts the heat-transfer and cyl-wall temperature phenomena in diesel engines? 2. Are there criteria for the design of diesel engine cyl that give the limits of reliable practice as found in typical diesels? Such a method of analysis is detailed in this paper. Design criteria were also found which appear applicable to broad classes of diesel engines. It was determined that the method was useful in prediction of the thermodynamic performance of a diesel insofar as the influence of cyl heat transfer on efficiency, power, and cooling load were predictable.
Technical Paper

On-Line Gas Analysis of Jet Engine Exhaust

1967-02-01
670945
The analysis of exhaust gas is becoming an increasingly important tool in determination of the performance of high temperature combustion systems. Previous methods involving the collection of gas samples in sampling tubes, followed by subsequent laboratory analysis, have been laborious and time consuming. A new on-line gas analysis system has been put into service, which makes a complete analysis every 30 sec directly at the test site. The system involves the use of five process gas chromatographs to measure oxygen, nitrogen, carbon dioxide, carbon monoxide, and hydrogen, plus a hydrocarbon analyzer to determine unburned hydrocarbons. These measurements in conjunction with other operating data permit the calculation of overall combustor performance, as well as identification of local point-by-point conditions at the combustor exit.
Technical Paper

A Hydromechanical Transmission Development

1967-02-01
670932
This paper describes the results of the first step of a planned development program to produce a family of split path hydro-mechanical transmissions for military applications. The HMT-250 hydromechanical transmission has given superior performance, unlimited ability to change ratio without affecting service life, and a control system with the advantages of variable ratio. The control system and testing programs are described in detail.
Technical Paper

High Bypass Versus Low Bypass Engine Installation Considerations

1966-02-01
660735
Installation considerations for high bypass engines in the range of 5-10 are examined. An engine and installation concept for the high bypass is described. Installation considerations discussed include the effects of nacelle shape, wing proximity, inlets, thrust reversers, and accessory location. It is pointed out that the high bypass engine may offer the flexibility to design the ideal aerodynamic installation without compromise by installation requirements.
X