Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Oxidation and de-NOx Catalyst for High Temperature Exhaust Diesel Trucks

1998-02-01
981196
SOF and de-NOx catalysts are applied to heavy-duty diesel trucks which are regulated by European 13 mode or Japanese 13 mode cycles. Precious metal free catalysts can reduce SOF at low temperatures without increasing sulfates up to 670C. This catalyst shows little deterioration after 400 hours of high temperature engine aging. 32% PM and 47% SOF reduction is observed under 13 mode tests when the exhaust gas temperature exceeds 700C (ECE-13 mode). This precious metal free catalyst is suitable for diesel trucks, especially trucks with natural aspirating engine whose exhaust gas temperature is very high. De-NOx catalysts with a 300-500C NOx reduction temperature window are applied to the Japanese heavy-duty test cycle (Japan 13 mode). When secondary diesel fuel is added under modes 8 to 12, (secondary fuel addition only when catalyst inlet temperature is more than 300C), 19-25% NOx can be reduced with 2-4% fuel penalty.
Technical Paper

Advanced Emission Control Technologies for PM Reduction in Heavy-Duty Applications

2003-05-19
2003-01-1862
1 In this paper results obtained with different particulate matter (PM) reduction technologies are presented. Diesel oxidation catalysts (DOC) are well known as a reliable PM reduction technology which can efficiently remove the soluble organic fraction (SOF) but which has no effect on the solid particles in PM. A drawback is that in combination with high sulfur fuel, oxidation of SO2 to SO3 by the DOC can occur, resulting in an increase of PM emissions. An alternative technology that is proven to significantly reduce soot emissions comprises diesel particulate wall-flow filters. High filtration efficiencies of up to 90% and beyond are feasible. The main obstacle is the combustion of the trapped soot. As shown in this paper, the application of a catalyst coating to the filter aids the filter regeneration by lowering the balance-point temperature. The main disadvantages of wall-flow filters are an increase in back-pressure and possible plugging caused by oil-ash accumulations.
Technical Paper

New Developments in Lean NOx Catalysis for Gasoline Fueled Passenger Cars in Europe

1996-10-01
962047
There is an increasing interest in running gasoline fueled passenger cars lean of stoichiometric air to fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios during cruising at partial load and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) under excess of oxygen. The target is to achieve the future legislation limits (EURO III/IV) in the European Union. Recent developments in automotive pollution control catalysis have shown that the utilization of NOx adsorption materials is a suitable way for reduction of NOx emissions of gasoline fueled lean burn engines.
Technical Paper

Advanced Catalyst Studies of Diesel NOx Reduction for Heavy-Duty Diesel Trucks

1996-05-01
961129
New catalysts with HC (hydrocarbon) storage ability to improve NOx conversion and to minimize fuel penalty over the US Heavy Duty Transient cycle were developed. Without secondary fuel addition, simultaneous reduction of 13% NOx and about 30% particulate was achieved by storing HC from the engine during low temperature portions of the transient cycle and releasing and using the stored HC for NOx conversion at higher temperatures. With only 1% secondary fuel addition, NOx reduction can be increased to 25%, and the particulate conversion remained relatively constant at about 20%. More than 30% NOx reduction can be obtained with 3% fuel penalty. All the pollutants (NOx, PM, HC and CO) were reduced with 0-1 % secondary fuel addition.
X