Refine Your Search

Topic

Search Results

Journal Article

Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering

2015-06-15
2015-01-2260
Artificial intelligence systems are highly accepted as a technology to offer an alternative way to tackle complex and non-linear problems. They can learn from data, and they are able to handle noisy and incomplete data. Once trained, they can perform prediction and generalization at high speed. The aim of the present study is to propose a novel approach utilizing the adaptive neuro-fuzzy inference system (ANFIS) and the fuzzy clustering method for automotive ride performance estimation. This study investigated the relationship between the automotive ride performance and relative parameters including speed, spring stiffness, damper coefficients, ratios of sprung and unsprung mass. A Takagi-Sugeno fuzzy inference system associated with artificial neuro network was employed. The C-mean fuzzy clustering method was used for grouping the data and identifying membership functions.
Journal Article

Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers

2011-10-18
2011-01-2583
Magneto-rhelological(MR) dampers are devices that use rheological fluids to modify the mechanical properties of fluid absorber. The mechanical simplicity, high dynamic range, large force capacity, lower power requirements, robustness and safe manner of operation have made MR dampers attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Landing gear is one of the most essential components of the aircraft, which plays an extreme important role in preventing the airframe from vibration and excessive impact forces, improving passenger comfortable characteristics and increasing aircraft flight safety. In this paper, the semi-active system used in landing gear damping controller design, simulation, and the vibration test-bed are discussed and researched. The MR dampers employed in landing gear system were designed, manufactured and characterized as available semi-active actuators.
Journal Article

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

2012-04-16
2012-01-0247
Vehicle needs suspension and steering systems with different features to fit different driving conditions. In normal straight driving condition, soft suspension and heavy steering systems are needed to achieve better ride comfort and straight line driving stability; in turning conditions, hard suspension and lightweight steering systems are needed to get better handing stability. The semi-active suspension system with Magneto-Rheological dampers can improve the ride comfort and handling performance of vehicle. Electrical power steering system is developed rapidly due to its portable and flexible operations as well as stable steering performance.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

2012-04-16
2012-01-0520
In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.
Journal Article

Analysis of Performance Parameters of Torsional Vibration Damper Under Various Operating Conditions

2013-04-08
2013-01-1488
The performance parameters of torsional vibration damper, including stiffness and damping, have great influence on the torsional vibration of automobile driveline. At present, the research on torsional vibration damper mainly concentrates on the torsional stiffness, but rarely on the torsional damping characteristics. This paper systematically studied the effect of torsional stiffness and damping on torsional vibration of automobile driveline under uniform speed conditions, accelerated and decelerated conditions, idling conditions and resonance conditions. The requirements on stiffness and damping of various operating conditions were summarized. The effect and requirements researched were useful to performance match design of torsional vibration damper.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Technical Paper

The Integrated Control of SBW and 4WS

2007-08-05
2007-01-3674
Steer-by-wire System is a new conception for steering system, which eliminates those mechanical linkages between hand steering wheel and front wheels, and communicates among the driver and wheels by signals and controllers. All these facilities improve the safety and conformability of the vehicle system and get rid of the mechanical constricts. This paper proposed three vehicle stability control strategies, including front wheel control, yaw rate feedback control and yaw rate& acceleration feedback control. We compared these three control methods by simulation and simulator tests. We also studied the integrated control algorithm of Steer-by-Wire System and 4WS, and compared with 2WS for SBW and the classical 4WS.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

2002-11-18
2002-01-3093
Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Technical Paper

Numerical and Experimental Investigation on Heat Exchange Performance for Heat Dissipation Module for Construction Vehicles

2017-03-28
2017-01-0624
In this work, a XD132 Road Roller from XCMG in China was employed as a research basis to study the heat exchange performance of the heat dissipation module under varied working conditions. The module in the XD132 consists of a cooling fan and three radiators. At first, the numerical investigation on the elementary units of radiators was performed to obtain Colburn j factor and Fanning friction f factor, which were used for the ε-NTU method to predict the radiator performance. The fan was numerically tested in a wind test tunnel to acquire the performance curve. The performance data from both investigations were transformed into the boundary conditions of the numerical vehicle model in a virtual tunnel. A field experiment was carried out to validate the simulation accuracy, and an entrance coefficient was proposed to discuss the performance regularity under four working conditions.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

Traffic Modeling Considering Motion Uncertainties

2017-09-23
2017-01-2000
Simulation has been considered as one of the key enablers on the development and testing for autonomous driving systems as in-vehicle and field testing can be very time-consuming, costly and often impossible due to safety concerns. Accurately modeling traffic, therefore, is critically important for autonomous driving simulation on threat assessment, trajectory planning, etc. Traditionally when modeling traffic, the motion of traffic vehicles is often considered to be deterministic and modeled based on its governing physics. However, the sensed or perceived motion of traffic vehicles can be full of errors or inaccuracy due to the inaccurate and/or incomplete sensing information. In addition, it is naturally true that any future trajectories are unknown. This paper proposes a novel modeling method on traffic considering its motion uncertainties, based on Gaussian process (GP).
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Technical Paper

Driving Behavior Prediction at Roundabouts Based on Integrated Simulation Platform

2018-04-03
2018-01-0033
Due to growing interest in automated driving, the need for better understanding of human driving behavior in uncertain environment, such as driving behavior at un-signalized crossroad and roundabout, has further increased. Driving behavior at roundabout is greatly influenced by different dynamic factors such as speed, distance and circulating flow of the potentially conflicting vehicles, and drivers should choose whether to leave or wait at the upcoming exit according to these factors. In this paper, the influential dynamic factors and driving behavior characteristics at the roundabout is analyzed in detail, random forest method is then deployed to predict the driving behavior. For training the driving behavior model, four typical roundabout layouts were created under a real-time driving simulator with PanoSim-RT and dSPACE. Traffic participants with different motion style were also set in the simulation platform to mimic real driving conditions.
Technical Paper

An Optimization of Suspension Linkages for Wheel-Legged Vehicle

2019-04-02
2019-01-0167
The guiding mechanism of vehicle suspension can keep the wheels moving along planned trajectory. The geometrical design of the reasonable suspension guide mechanism can reduce the vibration transmitted to the body, improve trafficability and handling stability. The vehicle suspension design method was applied to the wheel-legged vehicle, enhancing ride performance. The optimization of suspension hard points can be obtained by using single variable method, adjusting each hard point coordinate independently. It is also widely recommended by using intelligent algorithm to solve well-designed multi-objective parameter optimization function. In this study, the multi-objective parameter optimization function was solved by using the NSGA-II (Non-dominated Sorted Genetic Algorithm-II). Computer simulations with half-car model were used to support the analysis in this study. ADAMS multibody dynamics software was also used to verify the reliability of the results.
X