Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Model-Based Fault Diagnosis of Selective Catalytic Reduction Systems for Diesel Engines

2014-04-01
2014-01-0280
In this paper, a model-based diagnostic system was developed to detect and isolate the dosing fault and the outlet NOx sensor fault for the SCR system. The dosing fault is treated as an actuator additive fault, while the outlet NOx sensor drift and/or offset fault is treated as a sensor additive fault. First, a 0-D SCR model was developed to facilitate the model-based approach. A parity equation residual generator was designed based on the linearized SCR model and the fault transfer function matrix. The diagnostic algorithm is then implemented in the Matlab/Simulink environment for validation. A high fidelity nonlinear 1-D SCR model is used to generate system outputs and to simulate the plant. The simulation results show that the model-based fault diagnosis system succeeds in detecting and isolating the outlet NOx sensor and dosing faults with good sensitivity and robustness
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

Simulation of Curved Road Collision Prevention Warning System of Automobile Based on V2X

2020-04-14
2020-01-0707
The high popularity of automobiles has led to frequent collisions. According to the latest statistics of the United Nations, about 1.25 million people worldwide die from road traffic accidents each year. In order to improve the safety of vehicles in driving, the active safety system has become a research hotspot of various car companies and research institutions around the world. Among them, the more mature and popular active security system are Forward Collision Warning(FCW) and Autonomous Emergency Braking(AEB). However, the current active safety system is based on traditional sensors such as radar and camera. Therefore, the system itself has many limitations due to the shortage of traditional sensors. Compared to traditional sensors, Vehicle to Everything (V2X) technology has the advantages of richer vehicle parameter information, no perceived blind spots, dynamic prediction of dangerous vehicle status, and no occlusion restriction.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Trajectory Planning and Tracking for Four-Wheel-Steering Autonomous Vehicle with V2V Communication

2020-04-14
2020-01-0114
Lane-changing is a typical traffic scene effecting on road traffic with high request for reliability, robustness and driving comfort to improve the road safety and transportation efficiency. The development of connected autonomous vehicles with V2V communication provide more advanced control strategies to research of lane-changing. Meanwhile, four-wheel steering is an effective way to improve flexibility of vehicle. The front and rear wheels rotate in opposite direction to reduce the turning radius to improve the servo agility operation at the low speed while those rotate in same direction to reduce the probability of the slip accident to improve the stability at the high speed. Hence, this paper established Four-Wheel-Steering(4WS) vehicle dynamic model and quasi real lane-changing scenes to analyze the motion constraints of the vehicles.
Technical Paper

Intention-aware Lane Changing Assistance Strategy Basing on Traffic Situation Assessment

2020-04-14
2020-01-0127
Traffic accidents avoidance is one of the main advantages for automated vehicles. As one of the main causes of vehicle collision accidents, lane changing of the ego vehicle in case that the obstacle vehicles appear in the blind spot with uncertain motion intentions is one of the main goals for the automated vehicle. An intention-aware lane changing collision assistance strategy basing on traffic situation assessment in the complex traffic scenarios is proposed in this paper. Typical Regions of Interest (ROI) within the detection range of the blind spots are selected basing on the road topology structures and state space consisting of the ego vehicle and the obstacle vehicles. Then the motion intentions of the obstacle vehicles in ROI are identified basing on Gaussian Mixture Models (GMM) and the corresponding motion trajectories are predicted basing on the state equation.
Journal Article

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

2012-04-16
2012-01-0247
Vehicle needs suspension and steering systems with different features to fit different driving conditions. In normal straight driving condition, soft suspension and heavy steering systems are needed to achieve better ride comfort and straight line driving stability; in turning conditions, hard suspension and lightweight steering systems are needed to get better handing stability. The semi-active suspension system with Magneto-Rheological dampers can improve the ride comfort and handling performance of vehicle. Electrical power steering system is developed rapidly due to its portable and flexible operations as well as stable steering performance.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

2012-04-16
2012-01-0520
In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Journal Article

Spray Visualization and Characterization of a Dual-Fuel Injector using Diesel and Gasoline

2014-04-01
2014-01-1403
This paper focuses on the spray and atomization characteristics of a Dual-Fuel Injector (DFI) which includes a primary and a secondary fuel inlet. Three injectors were analyzed in this study. Apart from the DFI, two conventional diesel injectors were tested as baselines for comparison - a piezo-electric and a solenoid injector. The rail pressures ranged from 200 - 500 bar for the conventional injectors. The DFI was tested first as a single-fuel injector (by sealing the secondary inlet) at pressures ranging from 100 - 300 bar, and then in its dual-fuel mode with the primary inlet pressure ranging from 100 - 300 bar, and the secondary inlet at 25 bar higher than the primary pressure. Injection duration of 0.5 ms was chosen for the experiment. High-speed Mie scattering images were recorded to capture the spray evolution. Phase Doppler Anemometry (PDA) measurements were conducted at different locations in the spray for the acquisition of droplet sizes and velocity distributions.
Technical Paper

Temperature Compensation Control Strategy of Creep Mode for Hydraulic Hub-Motor Drive Vehicle

2020-06-09
2020-01-5059
Based on traditional heavy commercial vehicles, a hydraulic hub-motor drive vehicle (HHMDV) is equipped with a set of hydraulic hub-motor auxiliary system (HHMAS) to improve the traction performance and adaptability under complex conditions. In the case of low-speed operation or mechanical transmission failure, the creep mode (CM) can be used to drive the vehicle. Aiming at a common hydraulic system problem that flow loss increases due to temperature variation, a temperature compensation control strategy of the CM is proposed in this paper. By analyzing the speed regulation characteristics of the closed loop of the system in the CM, combined with the efficiency of the hydraulic variable pump (HP) and the hydraulic quantitative motor (HM), and aiming at adjusting the engine work in the optimal curve of the engine, the temperature compensation factor is introduced to control the HP displacement with hydraulic stepless speed regulation.
Technical Paper

EGR Response in a Turbo-charged and After-cooled DI Diesel Engine and Its Effects on Smoke Opacity

2008-06-23
2008-01-1677
Three thermo-wires with amplifying circuits have been developed to measure the time-resolved concentration of the exhaust gas recirculated into the intake manifold by a rotary valve-based exhaust gas recirculation (EGR) system of a diesel engine. Good agreement was found between the EGR rates measured by the temperature based system and a conventional CO2 tracing system. The developed EGR measuring system was used to investigate the EGR transient response in a turbo-charged and after-cooled diesel engine with a real-time measure and control system. The EGR response under EGR valve step change and engine transient operating conditions are discussed. At first, the engine was running under a certain steady condition with zero recirculated exhaust gas, then the rotary valve opened to maximum within 0.1s to demonstrate the EGR step change behavior. EGR rate and air intake stabilized in 0.5s.
X