Refine Your Search

Topic

Author

Search Results

Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

2015-04-14
2015-01-1028
In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Journal Article

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics

2018-04-03
2018-01-0705
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

2011-09-11
2011-24-0209
Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Journal Article

Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol: Investigations into Exhaust Emissions, Blend Properties and Octane Numbers

2012-09-10
2012-01-1586
Iso-stoichiometric ternary blends - in which three-component blends of gasoline, ethanol and methanol are configured to the same stoichiometric air-fuel ratio as an equivalent binary ethanol-gasoline blend - can function as invisible "drop-in" fuels suitable for the existing E85/gasoline flex-fuel vehicle fleet. This has been demonstrated for the two principal means of detecting alcohol content in such vehicles, which are considered to be a virtual, or software-based, sensor, and a physical sensor in the fuel line. Furthermore when using such fuels the tailpipe CO₂ emissions are essentially identical to those found when the vehicle is operated on E85. Because of the fact that methanol can be made from a wider range of feed stocks than ethanol and at a cheaper price, these blends then provide opportunities to improve energy security, to reduce greenhouse gas emissions and to produce a fuel blend which could potentially be cheaper on a cost-per-unit-energy basis than gasoline or diesel.
Technical Paper

Flex-Fuel Vehicle Development to Promote Synthetic Alcohols as the Basis of a Potential Negative-CO2 Energy Economy

2007-08-05
2007-01-3618
The engine of a high performance sports car has been converted to operation on E85, a high alcohol-blend fuel containing nominally 85% ethanol and 15% gasoline by volume. In addition to improving performance, the conversion resulted in significant improvement in full-load thermal efficiency versus operation on gasoline. This engine has been fitted in a test vehicle and made flex-fuel capable, a process which resulted in significant improvements in both vehicle performance and tailpipe CO2 when operating solely on ethanol blends, offering an environmentally-friendly approach to high performance motoring. The present paper describes some of the highlights of the development of the flex-fuel calibration to enable the demonstrator vehicle to operate on any mixture of 95 RON gasoline and E85 in the fuel tank. It also discusses how through detailed development, the vehicle has been made to comply with primary pollutant emissions legislation on any ethanol-gasoline mixture up to E85.
Technical Paper

Performance and Exhaust Emission Evaluation of a Small Diesel Engine Fuelled with Coconut Oil Methyl Esters

1998-02-23
981156
Renewable sources of energy need to be developed to fulfill future energy demands in areas such as the Maldives where traditional sources of raw materials are limited or non-existent. This paper explores the use of an alternative fuel derived from coconut oil that can be produced in the Maldives and can be used in place of diesel fuel. The main advantage of this particular fuel is that it is a highly saturated oil with a calorific value close to standard diesel fuel. The viscosity of the crude coconut oil is much higher than standard diesel fuel. To reduce the viscosity and to make the oil more suitable for conventional diesel engines methyl esters were produced using the transesterification process (1). The engine performed well on the coconut oil methyl esters although there was a small reduction in power consistent with the lower calorific value of the alternative fuel. Comparative performance data together with the emission levels for the two fuels are presented.
Technical Paper

Parametric Study into the Effects of Factors Affecting Real-World Vehicle Exhaust Emission Levels

2007-04-16
2007-01-1084
The work presented investigates the effect of road gradient, head-wind, horizontal road curvature, changes in tyre rolling radius, vehicle drag co-efficient and vehicle weight on real-world emission levels of a modern EURO-IV vehicle. A validated steady-state engine performance map based vehicle modeling approach has been used for the analysis. The results showed that a generalized correction factor to include the effect of road-gradient on real-world emission levels might not yield accurate results, since the emission levels are strongly dependent on the position of the vehicle operating parameters on the engine maps. In addition, it also demonstrated that the inclusion of horizontal road curvature such as roundabouts and traffic islands are essential for the estimation of the real-world emission levels.
Technical Paper

Towards an Open Source Model for Engine Control Systems

2008-06-23
2008-01-1711
Traditionally, university research in engine technology has been focused on fundamental engine phenomena. Increasingly however, research topics are developing in the form of systems issues. Examples include air and exhaust gas recirculation (EGR) management, after-treatment systems, engine cooling, hybrid systems and energy recovery. This trend leads to the need for engine research to be conducted using currently available products and components that are re-configured or incrementally improved to support a particular research investigation. A production engine will include an electronic control unit (ECU) that must be understood and utilised or simply removed and circumvented. In general the intellectual property (IP) limitations places on ECUs by their suppliers mean that they cannot be used. The supplier of the ECU is usually unable to reveal any detail of the implementation. As a consequence any research using production hardware is seriously disadvantaged from the beginning.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Multi-Zone Kinetic Model of Controlled Auto Ignition Combustion

2009-04-20
2009-01-0673
A multi-zone Controlled Auto Ignition (CAI) model for simulating the combustion and emissions has been developed and reported in this paper. The model takes into account the effects of the boundary layer, crevice volume, and blowby. In order to investigate the influences of in-cylinder inhomogeneity, the main cylinder chamber has been divided into multiple core zones with varying temperature and composition. Mass and energy transfer between neighbouring zones were modeled. A reduced chemical kinetic mechanism was implemented in each zone to simulate the CAI combustion chemistry and emission formation. An in-house code, the LUCKS (Loughborough University Chemical Kinetics Simulation), was employed to solve the coupled differential equations of the system. The model was validated against experimental results at various Internal Exhaust Gas Recirculation (IEGR) levels and was then used to analyze the thermal and chemical effect of the IEGR on the CAI combustion.
Technical Paper

The Application of Energy-Based Fuel Formulae to Increase the Efficiency Relevance and Reduce the CO2 Emissions of Motor Sport

2008-12-02
2008-01-2953
Concerns over energy security and global warming are beginning to be a serious issue for society and are also starting to drive customer purchasing decisions across many areas. Against this background there is an increasing call for motor sport to improve its environmental image, despite the fact that the global energy consumption and CO2 emissions attributable to motor sport are a very low proportion of the total. The real issue for motor sport in the face of the wider societal concerns is that, if it is truly at the cutting edge of relevant automotive engineering, it should be configured and managed in such a way as to drive technology for the betterment of mankind. The status quo is, it is contended, increasingly seen to be blatantly energy-profligate in the eyes of many people and this issue must be resolved if motor sport is to demonstrate the wider benefits of the technology developed by the huge financial investments committed to competing at the highest level.
Technical Paper

The Omnivore Wide-range Auto-Ignition Engine: Results to Date using 98RON Unleaded Gasoline and E85 Fuels

2010-04-12
2010-01-0846
Omnivore is a single cylinder spark ignition based research engine conceived to maximize the operating range of auto-ignition on a variety of fossil and renewable fuels. In order to maximize auto-ignition operation, the two-stroke cycle was adopted with two independent mechanisms for control. The charge trapping valve system is incorporated as a means of varying the quantity of trapped residuals whilst a variable compression ratio mechanism is included to give independent control over the end of compression temperature. The inclusion of these two technologies allows the benefits of trapped residual gas to be maximised (to minimize NOx formation) whilst permitting variation of the onset of auto-ignition. 2000rpm and idle are the main focus of concern whilst also observing the influence of injector location. This paper describes the rational behind the engine concept and presents the results achieved at the time of writing using 98ulg and E85 fuels.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Extending the Supply of Alcohol Fuels for Energy Security and Carbon Reduction

2009-11-02
2009-01-2764
The paper critiques proposals for de-carbonizing transport and offers a potential solution which may be attained by the gradual evolution of the current fleet of predominantly low-cost vehicles via the development of carbon-neutral liquid fuels. The closed-carbon cycles which are possible using such fuels offer the prospect of maintaining current levels of mobility with affordable transport whilst neutralizing the threat posed by the high predicted growth of greenhouse gas emissions from this sector. Approaches to de-carbonizing transport include electrification and the adoption of molecular hydrogen as an energy carrier. These two solutions result in very expensive vehicles for personal transport which mostly lie idle for 95% of their life time and are purchased with high-cost capital.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Development of a Validated CFD Process for the Analysis of Inlet Manifold Flows with EGR

2002-03-04
2002-01-0071
Exhaust Gas Recirculation (EGR) is one of several technologies that are being investigated to deliver future legislative emissions targets for diesel engines. Its application requires a detailed understanding of the thermo-fluidic processes within the engine's air system. A validated Computational Fluid Dynamics (CFD) process is one way of providing this understanding. This paper describes a CFD process to analyse unsteady manifold flows and mixing fields in the presence of realistic levels of EGR. The validation methodology was drawn from the American Institute of Aeronautics and Astronautics (AIAA) and divides the problem into smaller elemental problems. Detailed knowledge about these elemental problems is easily attainable, reducing the requirement for a large number of complex validation runs. The final validated process was compared to flow visualization and particle image velocimetry (PIV) data collected from a motored engine.
X