Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Phosphorous Poisoning Study for Diesel Oxidation Catalyst

2021-09-22
2021-26-0204
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel catalytic emission control concepts. The present study will focus on the Phosphorous impact on Pt based Diesel Oxidation Catalyst after exposure to it over time based on engine oil consumption for lifetime to meet the durability requirements of Indian legislations and Indian OEMs. With BSVI announcement India along with US/Europe will ply their Automobile/Non-Road(>56Kw) engines with Diesel Oxidation Catalysts (DOC), Diesel Particulate Filters (DPF), devices for Selective Catalytic Reduction (SCR) and last but not least an Ammonia Slip Catalyst (ASC). This entire chain of After Treatment system elements play a vital role in emission reduction. Apart from this, these system elements are very much dependent on their preceding system and their performance strongly depend on the previous Catalytic function.
Technical Paper

Crevice Corrosion of Aluminium and It’s Prevention in Automobile Coolant Circuit

2017-01-10
2017-26-0170
This paper deals with the study of the phenomenon of crevice corrosion of aluminium by using an example of a corrosion failure of a joint in the automobile coolant circuit. A number of joint failures were studied to understand the corrosion pattern and for various metallurgical aspects like chemistry, hardness and microstructure. The corrosion products were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This analysis indicated that the corrosion products mostly contained Aluminium Oxides with other contaminants like chlorides. The studies revealed that the clamped joint of the aluminium part and rubber hose led to the formation of a crevice with the engine coolant acting as the corrosive medium. The corrosion behavior at the location was affected by environmental factors like temperature, pH and chloride contamination.
Technical Paper

Case Study: An Accelerated Methodology for Simulating Thermal Stress in Automotive Headlamps

2017-01-10
2017-26-0322
In any industry, early detection and mitigation of a failure in component is vital for feasible design changes or development iterations or saving money. So it becomes pivotal to capture the failure mode in an accelerated way. This theory poses many challenges in devising the methodology to validate the failure mode. In real world, vehicle head lamp is exposed to all possible kinds of harsh environments such as variable daily ambient, rain, dust and engine compartment temperature …etc. This brings rapid thermal stress onto headlamp resulting into warpage cracks. At vehicle level on particular model, this failure is typically observed after 20,000-25,000 kms in a span of 3-4 months of running. Any corrective action to revalidate the design change or improvement will need similar timelines in regular way to test, which is quite high in product development cycle.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

Challenges in Performing DPF Regeneration in Indian Driving Conditions for Meeting BS6 Emission

2021-09-22
2021-26-0194
The present study investigates the challenges on performing the on-road regeneration process in Indian road conditions for meeting BS6 emission. There are different types (DPF and SCR) of aftertreatment systems used for meeting BS6 emission. In which, active regeneration (on-road demand) is used to burn the particulate matter accumulated in the diesel particulate filter (DPF). This process must be performed frequently in order to prevent DPF system from over soot loading which leads to damage the DPF. This process is dependent on exhaust temperature, flow of exhaust and availability of oxygen etc. As we know, Indian roads are different from other countries such as European countries. The abnormal soot loading and frequent regeneration lead to many concerns such as oil dilution, performance of the engine and life of DPF system etc.
Technical Paper

Automotive Vision & Obstruction Assessment For Driver

2017-01-10
2017-26-0012
This paper makes an attempt to focus on a study to evaluate angle of vision and obstruction in a vehicle, it is an objective assessment through different percentiles of population. In a view of Safety and comfort of a driver, a good perception of environment in which his vehicle is operating will be a determining component. Driver visibility and hidden corner in vehicle is a major safety area for passengers and pedestrian. Driver eye vision is an important key factor to design vehicle windshield, rear window and A-Pillar/ B-Pillar, positioning of side view mirror and IRVM based on anthropometry data. This study focuses on method of capturing and measuring the i) Driver's Direct field of vision that the driver sees directly by moving his/her eyes ii) Driver's Indirect field of vision in which driver views indirectly by using imaging devices Rear View mirror, Display cameras. iii) Driver's Angle of obstruction - by A pillar, B pillar.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Optimized In Cylinder NOx Reduction Strategy for Meeting BSVI Emission Limits

2019-01-09
2019-26-0142
The tough emission limits of BSVI norms with very low levels of NOx and PM emissions presents major techno economic challenges for the automobile industry. Combined efforts of pollutants reduction by combustion modification as well as the exhaust after treatment devices could only facilitate to achieve the desired emission targets. selective catalytic reduction technology is a mandatory system which uses ammonia from the aqueous urea solution to react with NOx forming nontoxic by products. The cost spent on aqueous urea solution in addition to the cost of BSVI diesel encounters high operating cost for the vehicle. NOx reduction by SCR too requires adequate quantity of ammonia from the AdBlue. Hence sensible utilization of DEF is essential for reduced running cost of the SCR system. SCR efficiency is higher for higher exhaust temperature and it requires minimum exhaust temperature above which only it operates.
Technical Paper

Methodology to Determine Optimum Suspension Hard Points at an Early Design Stage for Achieving Steering Returnability in Any Vehicle

2019-01-09
2019-26-0074
Steering returnability while driving is one of the most important parameter which affects the drive pleasure and handling of a vehicle. Steering returnability refers to the automatic returning response of the steering wheel after taking a full turn while vehicle is being steered during driving. Evaluating steering response characteristics of any vehicle in a virtual environment at early stage of a product development saves significant development time and cost. Through this paper an attempt has been made to develop a methodology for selection of suspension hard points which influences steering returnability characteristics of a vehicle at an early product design stage. Conventionally, suspension kinematic parameters such as Caster angle, Steering axis inclination (SAI), etc. are iterated during vehicle design stage to achieve desired Steering returnability.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Development of 2.2 L CRDe Engine Meeting BS4 Emission Norms without the Aid of EGR Cooling

2018-07-09
2018-28-0069
The never-ending concern on the air quality and atmospheric pollution has paved way for more stringent emission legislations. Existing Diesel engine hardware face several problems on meeting the tough emission limits and they require more additional features to comply with the emission standards. The current research work throws light on the air path control approach to meet the Bharat stage 4 emission norms on 2.2 L Sports Utility Vehicle engine operating with EGR cooler and the techniques followed to meet the same emission norms without the application of EGR cooler which was successfully implemented on the vehicles enabling reduction of hardware. Also the migration of 2.2 L engine from 88 kW operating on Compression ratio 18.5 to 103 kW at a lower Compression ratio of 16.5 is a challenging process to achieve Nitrogen oxide emissions reduction at part loads.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
Technical Paper

Factors affecting Regeneration interval of a Diesel Particulate Filter and their influence on BSV emission application

2015-01-14
2015-26-0106
With the implementation of stringent PM emission norms in various countries for diesel vehicles, the legislation demands a PM mass limit as low as 4.5mg/km in the NEDC cycle, starting from Euro5. This makes the usage of Diesel Particulate Filters (DPF) mandatory. The same is going to be mandated for upcoming BSV emission norms in India. Thus it becomes imperative to know the functional aspects of a DPF and their impacts. Basically there are two major functions of a DPF- Soot mass filtration and Soot burning or Regeneration. This paper highlights usage of DPF in Indian context from the perspective of one of the major aspects of DPF regeneration-Regeneration Interval, which is basically governed by vehicle/engine out smoke. Regeneration interval also has direct or indirect influence on life of engine of a vehicle and average fuel economy of a vehicle which will also be touched upon herein.
Technical Paper

CAE Based Development of Hydro-Formed Crush Box for High Speed Impacts and its Correlation at Full Vehicle Level

2015-01-14
2015-26-0183
Crush box in an automotive passenger car has become an integral part of structural design performing various functions like optimizing energy absorption in high speed impacts, replaceable part during low speed impacts etc. Design of crush box for high speed impacts is very important as it is the first major energy absorbing component in the load path and its deformation significantly affects the overall vehicle crash behavior. The present paper explains development of a hydro-formed crush box in the front end of a sports utility vehicle. Hydro-formed components have residual plastic strains and non - uniform thickness variation throughout their length which is difficult to measure from a physical test coupon. It is critical to add hydro-forming effects onto crash FE models as it significantly affects the deformation under high speed impact. But detailed forming simulations need mature design and material data which is not available during early phases of product development.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine

2019-10-11
2019-28-0108
The combustion phenomenon of diesel engines has got a very major impact on the performance and exhaust emission levels. Several important factors like engine components design, combustion chamber design, Exhaust gas recirculation, exhaust after treatments systems, engine operating parameters etc. decide the quality of combustion. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum timing of injection. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which lead to the selection of perfect injector for a given engine. This paper focusses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP.
Technical Paper

Parametric Investigations on the Performance of Diesel Oxidation Catalyst in a Light Duty Diesel Engine - An Experimental and Modelling Study

2019-01-09
2019-26-0299
In order to comply with the stringent future emission mandates of automotive diesel engines it is essential to deploy a suitable combination of after treatment devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNox converter (Lean NOx Trap (LNT) or Selective Catalytic reduction (SCR) system). Since arriving at a suitable strategy through experiments will involve deploying a lot of resources, development of well-tuned simulation models that can reduce time and cost is important. In the first phase of this study experiments were conducted on a single cylinder light duty diesel engine fitted with a diesel oxidation catalyst (DOC) at thirteen steady state mode points identified in the NEDC (New European Driving cycle) cycle. Inlet and exit pressures and temperatures, exhaust emission concentrations and catalyst bed temperature were measured. A one dimensional simulation model was developed in the commercial software AVL BOOST.
X