Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Evaluation Method for HDV Fuel Economy Performance with PC Simulation and Mapping Procedure

2003-05-19
2003-01-2010
As countermeasures against global warming caused by carbon dioxide, improvement of automotive fuel economy to lower CO2 emission becomes important. In order to promote less CO2 vehicles, appropriate methods to evaluate vehicle fuel economy performance are needed. However, the existing fuel economy test is limited to passenger cars and light duty trucks. The test is executed on a chassis dynamometer. However, if this test method is applied to heavy-duty vehicles (HDV), a large sized chassis dynamometer is needed. Furthermore, heavy duty vehicles have wide variations in a combination of an equipped engine, body shape, a transmission gear, a permissible limit of pay load, and so on. This leads to the increase in the number of chassis dynamometer tests. Therefore, it is difficult to use chassis dynamometer test to evaluate HDV fuel economy performance.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

The Performance of a Diesel Engine for Light Duty Truck Using a Jerk Type In-Line DME Injection System

2004-06-08
2004-01-1862
Over the last few years much interest has been shown in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, making it eminently suitable for compression engines. According, however, to past engine test results, the engine output of a DME engine lacking compatibility as a DME injection system, is low in comparison with a diesel engine. Required is development of a DME injection system conforming to DME properties. The purpose of this work is to investigate the feasibility of DME application for a conventional jerk-type in-line injection system that has the actual result of use of a comparatively low lubricity fuel such as methanol.
Technical Paper

Development of a Hydrogen Powered Medium Duty Truck

1987-11-08
871168
Considerable amount of research work on hydrogen fueled engines has been conducted for 17 years in Musashi Institute of Technology. The primary purpose of the research has been to develop a hydrogen powered autmobile, and in order to realized it, various innovations have been applied and tested. The newest outcome of this 17 years research was Musashi-7 Track, which demonstrated its performance in Innovation vehicle Design Competition held in Vancouver in July 1986. Musashi-7 Track was a modified medium duty truck, which was originally made by Hino Motors, and had a hydrogen powered engine. The track was equipped with 150 ℓ liquid hydrogen (LH2) tank and 8 MPa high pressure LH2 pump. The pump delivered 8 MPa high pressure hydrogen gas to the engine and the fuel was injected to a hot surface igniter in DI combustion chamber. This type of hydrogen enigne has following advantages. Firstly, fuel corrier weight and volume can be much smaller than those of metal-hydrides (MH).
Technical Paper

Oil Film Thickness Measurement and Analysis of a Three Ring Pack in an Operating Diesel Engine

2000-06-19
2000-01-1787
Oil film thicknesses of the piston top ring and the second ring of a truck diesel engine have been measured simultaneously by embedding capacitance type clearance sensors in the ring sliding surfaces. Owing to the above, several phenomena such as the variation in oil film thickness of each ring in one cycle, correlation between the rings, difference in oil film thickness between the thrust and counter thrust-sides, effects of engine operating conditions on oil film thickness, etc. have been determined. Efforts have been also made to analyze the causes of such phenomena according to the measured results of piston slap motion and ring motions, and the calculated results of oil film thickness.
Technical Paper

Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian Accidents

2016-11-07
2016-22-0007
This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class.
X