Refine Your Search

Topic

Author

Search Results

Technical Paper

Thin Film Measurement Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2007-07-09
2007-01-3039
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions [1,2,3,4,5]. Reduced gravity testing of the VPCAR System has been initiated to identify any potential problems with microgravity operation. Two microgravity testing campaigns have been conducted on NASA's C-9B Reduced Gravity Aircraft. These tests focused on the fluid dynamics of the unit's Wiped-Film Rotating Disk (WFRD) evaporator. The experiments used a simplified system to study the process of forming a thin film on a rotating disk. The configuration simulates the application of feed in the VPCAR's WFRD evaporator. The first round of aircraft testing, which was completed in early 2006, indicated that a problem with microgravity operation of the WFRD existed. It was shown that in reduced gravity the VPCAR wiper did not produce a uniform thin film [6]. The film was thicker near the axis of rotation where centrifugal forces are small.
Technical Paper

Development of the Compact Flash Evaporator System for Exploration

2007-07-09
2007-01-3204
This paper will discuss the status of the Compact Flash Evaporator System (CFES) development at NASA Glenn. Three alternative heat sink technologies are being developed under Thermal Control for Advanced Capabilities within the Exploration Technology Development Program. One of them is CFES, a spray cooling concept related to the current Space Shuttle Orbiter Flash Evaporator System (FES). In the CFES concept, water is sprayed on the outside of a flat plate heat exchanger, through which flows the vehicle's primary vehicle heat transfer fluid. The steam is then exhausted to space in an open-loop system. Design, fabrication and testing of the CFES at NASA's Glenn Research Center will be reported.
Technical Paper

Review of Role of Icing Feathers in Ice Accretion Formation

2007-09-24
2007-01-3294
This paper presents a review of our current experimental and theoretical understanding of icing feathers and the role that they play in the formation of ice accretions. It covers the following areas: a short review of past research work related to icing feathers; a discussion of the physical characteristics and terminology used in describing icing feathers; the presence of feathers on ice accretions formed in unswept airfoils, especially at SLD conditions; the role that icing feathers play in the formation of ice accretion shapes on swept wings; the formation of icing feathers from roughness elements; theoretical considerations regarding feather formation, feather interaction to form complex icing structures, the role of film dynamics in the formation of roughness elements and the formation of feathers. Hypotheses related to feather formation and feather growth are discussed.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

Lunar Dust Cloud Characterization in a Gravitational Settling Chamber Experiencing Zero, Lunar, Earth and 1.8-g Levels

2009-07-12
2009-01-2357
In order to study dust propagation and mitigation techniques, an inertial separation and gravitational settling experiment rig was constructed and used for experimental work in reduced gravity aircraft flights. The first experimental objective was to test dust filtration by a cyclone separator in lunar gravity. The second objective was to characterize dust flow and settling in lunar gravity in order to devise more comprehensive dust mitigation strategies. A settling channel provided a flow length over which particles settled out of the air flow stream. The experimental data provides particle quantity and size distribution, and a means of verifying numerical predictions.
Technical Paper

NASA's In-Flight Education and Training Aids for Pilots and Operators

2003-06-16
2003-01-2142
To support NASA's goal to improve aviation safety, the Aircraft Icing Project of the Aviation Safety Program has developed a number of education and training aids for pilots and operators on the hazards of atmospheric icing. A review of aircraft incident and accident investigations has revealed that flight crews have not always understood the effects of ice contamination on their aircraft. To increase this awareness, NASA has partnered with regulatory agencies and pilot trade organizations to assure relevant and practical materials that are focused toward the intended pilot audience. A number of new instructional design approaches and media delivery methods have been introduced to increase the effectiveness of the training materials by enhancing the learning experience, expanding user interactivity and participation, and, hopefully, increasing learner retention rates.
Technical Paper

SLD Research in the UK

2003-06-16
2003-01-2128
This paper reviews work conducted in the UK aimed at developing validated methods to simulate ice accretion formed in super-cooled large droplet (SLD) icing conditions. To date, QinetiQ has completed one theoretical and three experimental programmes of work. Two further studies are currently in progress within UK universities. This paper provides results from the third test conducted by QinetiQ and NASA in the GKN Aerospace Composite Technologies Icing Research Wind Tunnel, Luton UK, to measure the mass loss through droplet splash during an SLD encounter. A description of the test procedures and the results obtained are provided. Future work on SLD methods development in progress in the UK is then briefly outlined.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

Ice Accretions on a Swept GLC-305 Airfoil

2002-04-16
2002-01-1519
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to obtain castings of ice accretions formed on a 28° swept GLC-305 airfoil that is representative of a modern business aircraft wing. Because of the complexity of the casting process, the airfoil was designed with three removable leading edges covering the whole span. Ice accretions were obtained at six icing conditions. After the ice was accreted, the leading edges were detached from the airfoil and moved to a cold room. Molds of the ice accretions were obtained, and from them, urethane castings were fabricated. This experiment is the icing test of a two-part experiment to study the aerodynamic effects of ice accretions.
Technical Paper

Iced Aircraft Flight Data for Flight Simulator Validation

2002-04-16
2002-01-1528
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice.
Technical Paper

Simulation Model Development for Icing Effects Flight Training

2002-04-16
2002-01-1527
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

An Overview of NASA Engine Ice-Crystal Icing Research

2011-06-13
2011-38-0017
Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA's Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA's engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA's research.
Technical Paper

NASA's Fundamental Aeronautics Subsonic Fixed Wing Project: Generation N+3 Technology Portfolio

2011-10-18
2011-01-2521
Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets. The NASA Fundamental Aeronautics Subsonic Fixed Wing (SFW) Project addresses the comprehensive challenge of enabling revolutionary energy-efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies, and the development of unconventional aircraft systems, offer the potential to achieve these improvements.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

Light Weight Nickel-Alkaline Cells Using Fiber Electrodes

2004-11-02
2004-01-3167
Using a new fiber electrode technology, currently developed and produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC, Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr./kg) as state-of-the-art nickel hydrogen cells that are currently flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as: ability to undergo a continuous overcharge, reversal on discharge, and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures.
Technical Paper

Performance Characterization of a Lithium-Ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

2004-11-02
2004-01-3166
Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed.
Technical Paper

Additional Comparison of Ice Shapes on Full-Chord and Truncated Swept Wing Models from January 2022

2023-06-15
2023-01-1387
A research program was conducted to evaluate the effectiveness of icing tunnel hybrid model design. A hybrid design is where the full-scale leading edge of a wing section is maintained only to a certain percentage of the local chord, while the aft section of the model is redesigned into a shortened or truncated planform. An initial study was conducted in 2020 where the ice shape geometries on a full-chord length version of the swept CRM65 wing model were compared to those from the hybrid version of CRM65 that were obtained in the NASA Icing Research Tunnel in 2015. The results were reported in a 2021 paper. For most test conditions, the overall size and shape of the ice shapes compared well. However, the ice shapes from the full-chord model were generally slightly smaller than those from the hybrid model.
Technical Paper

Demonstration of Initial GlennICE Relative Frame Capability: Axial-Flow Propeller

2023-06-15
2023-01-1457
Modifications have been implemented in the GlennICE software to accommodate a non-inertial reference frame. GlennICE accepts a flow solution from an external flow solver. It then introduces particles and tracks them through the flow field in a Lagrangian manner. Centrifugal and Coriolis terms were added to the GlennICE software to account for relative frame simulations. The objective of the present paper is twofold. First, to check that the new terms are implemented correctly and that the code still behaves as expected with respect to convergence. And second, to provide some initial insight into an upcoming propeller experiment in the NASA Icing Research Tunnel. The paper presents a description of the code modifications. In addition, results are presented for two operating conditions, and three particle sizes. Each case was simulated with four different grid densities to assess grid dependence.
X