Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Reduction of Hot Tears: Alloy and Casting Process Optimization Using Neutron Diffraction

2010-04-12
2010-01-0748
The continued need of vehicle weight reduction provides impetus for research into the development of novel automotive casting alloys and their processing technologies. Where possible, ferrous components are being replaced by aluminum (Al) and magnesium (Mg) alloy counterparts. This transition, however, requires a systematic optimization of the alloys and their manufacturing processes to enable production of defect-free castings. In this context, prevention of hot tears remains a challenge for Al and Mg alloy thin-wall castings. Hot tears form in semi-solid alloy subjected to localized tensile stress. Classical methods of stress measurement present numerous experimental limitations. In this research, neutron diffraction (ND) was used as a novel tool to obtain stress maps of castings and to quantify the effect of two processes used to eliminate hot tears in permanent mold castings: 1) increasing of the mold temperature during casting of Mg alloys, and 2) grain refinement of Al alloys.
Journal Article

Fracture Behavior of Typical Structural Adhesive Joints Under Quasi-Static and Cyclic Loadings

2010-04-12
2010-01-0969
Structural adhesive joints are expected to retain integrity in their entire service-life that normally involves cyclic loading concurrent with environmental exposure. Under such a severe working condition, effective determination of fatigue life at different temperatures is crucial for reliable joint design. The main goal of this work was thus defined as evaluation of fatigue performance of adhesive joints at their extreme working temperatures in order to be compared with their fracture properties under static loading. A series of standard double-cantilever-beam (DCB) specimens have been bonded by three structural 3M epoxy adhesives selected from different applications. The specimens were tested under monotonic and cyclic opening loads (mode-I) in order to evaluate the quasi-static and fatigue performances of selected adhesives at room temperature, 80°C and -40°C.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Journal Article

Effect of Chill Parameters on the Residual Strain in Cast 319 Aluminum Alloy: A Neutron Diffraction Study

2014-04-01
2014-01-0836
The demand for light weight vehicles continues to stimulate extensive research into the development of light weight casting alloys and optimization of their manufacturing processes. Of primary relevance are Aluminum (Al) and Magnesium (Mg) based alloys, which have successfully replaced selected iron based castings in automobiles. However, optimization of as-cast microstructure, processing and performance remains a challenge for some Al-based alloys. In this context, placement of chills in castings has been frequently used to locally manipulate the solidification conditions and microstructure of a casting. In this work, the effect of using an active copper chill on the residual strain profile of a sand-cast B319 aluminum alloy was investigated. Wedge-shaped castings were produced with three different cooling conditions: copper plate chill, copper pipe with cooling water and no chill (baseline).
Journal Article

Review of Canadian Flight Deck and Cabin Smoke and Fire Incidents: 2001-2010

2013-09-17
2013-01-2307
This paper presents a review of the flight deck and cabin fire and smoke incidents reported to the Canadian airworthiness authorities over a ten year span. The fire and smoke related diversions are categorized to identify areas where efforts could be increased to improve safety. The costs of diversions are estimated to identify areas where operators could reduce costs by seeking technologies to reduce the number of diversions without any impact on safety. Only twenty-eight investigation reports into fire and smoke incidents onboard aircraft have been published over the past three decades. These reports are not sufficient to identify areas where operators can reduce their operating costs. The Canadian airworthiness authorities received over 1,000 smoke and fire incidents from the years 2001 to 2010, of which, over 680 reported fire and smoke in the flight deck and cabin compartments for various makes and models of aircraft.
Journal Article

A System for Simulating Road-Representative Atmospheric Turbulence for Ground Vehicles in a Large Wind Tunnel

2016-04-05
2016-01-1624
Turbulence is known to influence the aerodynamic and aeroacoustic performance of ground vehicles. What is not thoroughly understood are the characteristics of turbulence that influence this performance and how they can be applied in a consistent manner for aerodynamic design and evaluation purposes. Through collaboration between Transport Canada and the National Research Council Canada (NRC), a project was undertaken to develop a system for generating road-representative turbulence in the NRC 9 m Wind Tunnel, named the Road Turbulence System (RTS). This endeavour was undertaken in support of a larger project to evaluate new and emerging drag reduction technologies for heavy-duty vehicles. A multi-stage design process was used to develop the RTS for use with a 30% scale model of a heavy-duty vehicle in the NRC 9m Wind Tunnel.
Journal Article

Neutron Diffraction Study on Residual Stress in Aluminum Engine Blocks Following Machining and Service Testing

2012-04-16
2012-01-0188
Development of lightweight alloys suitable for automobile applications has been of great importance to the automotive industry in recent years. The use of 319 type aluminum alloy in the production of gasoline engine blocks is an example of this shift towards light alloys for large automobile components. However, excessive residual stress along the cylinder bores of these engine blocks may cause problems during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual stresses along the aluminum cylinder bridge and the gray cast iron liners. The strains were measured in the hoop, radial, and axial orientations, while stresses were subsequently calculated using generalized Hooke's law. The results suggest that the residual stress magnitude for the aluminum cylinder bridge was tensile for all three measured components and gradually increased with cylinder depth towards the bottom of the cylinder.
Journal Article

Analysis of Residual Strain Profiles in Distorted Aluminum Engine Blocks by Neutron Diffraction

2013-04-08
2013-01-0171
In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components.
Technical Paper

Optimization of Casting Parameters on an Improved AA6061 Aluminum Alloy for Semi-Solid Die Casting

2010-04-12
2010-01-0225
A study was conducted to assess the performance and castability of a new AA6061 aluminum alloy variant specially designed for semi-solid pressure die casting. The AA6061 alloy has very desirable mechanical properties for the fabrication of automotive parts. However, it has limited castability due to its low silicon content. It is not well suited for shape casting processes which are, for their part, very interesting in terms of production costs for complex-shaped automotive components. In an effort to meet automotive industry requirements, new AA6061 alloy variants have been developed by Rio Tinto Alcan researchers over the past years, aiming to improve the castability of the alloy while maintaining its desirable mechanical properties, by increasing its die-filling capacity, decreasing its hot tearing tendency. The study described herein is an example of how the performance of a single variant was assessed in terms of castability. The full study was conducted on six separate variants.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Technical Paper

In-Cabin Aeroacoustics of a Full-Scale Transport Truck

2016-09-27
2016-01-8143
The noise generated by the flow of air past a transport truck is a key design factor for the manufacturers of these vehicles as the sound levels in the cabin are a significant component of driver comfort. This paper describes a collaboration between Volvo GTT and the National Research Council Canada to measure the in-cabin aeroacoustics of a full-scale cab-over tractor in the NRC 9 m Wind Tunnel. Acoustic instrumentation was installed inside the tractor to record cabin noise levels and externally to acquire tunnel background noise data. Using a microphone mounted on the driver’s-side tunnel wall as a reference to remove variations in background noise levels between data points, differences in cabin noise levels were able to be detected when comparing the tractor with different configurations. The good repeatability of the data allowed for differences of as little as 0.5 dB to be measured.
Technical Paper

Mechanical Property Behaviour of Rheocast 319 Alloys with and without Iron Additions

2011-04-12
2011-01-1089
Cast aluminum-silicon alloys have witnessed a notable increase in use in the automotive and transport industry. The ability of these alloys to be easily cast into complex shapes coupled with a favorable strength-to-weight ratio has given them an edge over cast irons. One particular area of casting which has received further and further attention is the area of semi-solid casting, where an alloy casting is prepared as slurry with flow properties that resemble both solid and liquid. In the present work, the effects of iron additions on the mechanical properties of a 319 semi-solid alloy were studied. This alloy was prepared using the SEED process, as developed by Rio Tinto Alcan in collaboration with the Aluminum Technology Centre of NRC Canada. The SEED (Swirled Enthalpy Equilibration Device) process is a novel rheocasting method which yields a semi-solid slurry from the mechanical stirring and cooling of the molten aluminum.
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
Technical Paper

Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research

2011-06-13
2011-38-0079
This paper describes the commissioning of a linear compressor cascade rig for ice crystal research. The rig is located in an altitude chamber so the test section stagnation pressure, temperature and Mach number can be varied independently. The facility is open-circuit which eliminates the possibility of recirculating ice crystals reentering the test section and modifying the median mass diameter and total water content in time. As this is an innovative facility, the operating procedures and instrumentation used are discussed. Sample flow quality data are presented showing the distribution of velocity, temperature, turbulence intensity and ice water concentration in the test section. The control and repeatability of experimental parameters is also discussed.
Technical Paper

Thermo-Mechanical Fatigue Testing of Welded Tubes for Exhaust Applications

2018-04-03
2018-01-0090
Selected ferritic stainless steel sheets for exhaust applications were tested under thermo-mechanical fatigue (TMF) condition in the temperature range of 400-800 °C with partial constraint. Straight welded tubes were used as the testing coupons to withstand large compression without buckling, and to understand the effect of welding as well. Repeated tests confirmed the observed failure scenario for each material type. The hysteresis loop behaviors were also simulated using the mechanism-based integrated creep and fatigue theory (ICFT) model. Although more development work is needed, for quick material screening purpose this type of testing could be a very cost effective solution for materials and tube weld development for exhaust applications.
Technical Paper

Hot Forming of 7075 Aluminium Alloy Tubes to Produce Complex and Strong Components

2012-04-16
2012-01-0539
Lightweight tubular products offering enhanced stiffness and strength have always been of major concern for transportation and recreational applications. Hence, industries have turned to complex-shaped tubes to increase product performance and reduce energy costs. High-performance aluminum alloys, like 7075 for instance, have good mechanical properties such as high strength, but low formability at ambient temperature. Fortunately, hot tensile tests on 7075 samples have yielded an increase in formability with temperature. Therefore, testing has recently been launched at the Aluminum Technology Center to develop a new product application. More precisely, a 1,000-ton hydraulic press was equipped with +600°C heating plates and fitted with a bicycle handlebar mold. The plates provide 10 separate heating zones that can be adjusted independently. A thermo-mechanical model was also developed using LS-DYNA to determine tube temperatures around the heating zones.
Technical Paper

Carded Recycled Carbon Fiber Mats for the Production of Thermoset Composites via Infusion/Compression Molding

2013-09-17
2013-01-2208
The use of carbon fiber reinforced thermoset composites has doubled in the last decade raising questions about the waste generated from manufacturing and at end-of-life, especially in the aircraft industry. In this study, 2.5 cm long carbon fibers were recovered from thermoset composite waste using a commercial scale pyrolysis process. Scanning electron microscopy, density measurements, single filament tensile testing as well as micro-droplet testing were performed to characterize the morphology, mechanical properties, and surface adhesion of the fibers. The recycled fibers appeared to be mostly undamaged and clean, exhibiting comparable mechanical properties to virgin carbon fibers. A carding process followed by an ultrasound treatment produced randomly aligned recycled fiber mats. These mats were used to fabricate composite plates, with fiber volume fractions up to 40 %, by infusion / compression molding.
Technical Paper

An Assessment of “Pyrolysis” as a Resource Recovery Option for Automobile Shredder Residue

1998-02-23
981163
Pyrolysis, the chemical cracking of organic materials such as polymeric materials represents an innovative technology to recover resources contained in automobile shredder residues (ASR). In this study the technical capabilities, economic viability and environmental impact of pyrolysis as applied to ASR has been investigated. Based upon data provided by pyrolysis equipment suppliers, the pyrolysis of ASR appears to be a viable option to deal with the growing quantities of this material currently being produced. However, the selection of the most appropriate pyrolysis technology is dependant upon local needs and requirements.
X