Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Compression Ignition 6-Stroke Cycle Investigations

2014-04-01
2014-01-1246
Driven by the desire to implement low-cost, high-efficiency NOx aftertreatment systems, such as Three Way Catalysts (TWC) or Lean NOx Traps (LNT), a novel 6-Stroke engine cycle was explored to determine the feasibility of implementing such a cycle on a compression ignition engine while continuing to deliver fuel efficiency. Fundamental questions regarding the abilities and trade-offs of a 6-stroke engine cycle were investigated for near-stoichiometric and lean operation. Experiments were performed on a single-cylinder 15-liter (equivalent) research engine equipped with flexible valvetrain and fuel injection systems to allow direct comparison between 4-stroke and 6-stroke performance across multiple hardware configurations. 1-D engine simulations with predictive combustion models were used to support, iterate on, and explore the 6-stroke operation in conjunction with the experiments.
Journal Article

Impact of Cetane Number on Combustion of a Gasoline-Diesel Dual-Fuel Heavy-Duty Multi-Cylinder Engine

2014-04-01
2014-01-1309
Dual-fuel combustion using liquid fuels with differing reactivity has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low soot and NOx emissions, and high indicated efficiency. Varying fractions of gasoline-type and diesel-type fuels enable operation across a range of low- and mid-load operating conditions. Expanding the operating range to cover the full operating range of a heavy-duty diesel engine, while maintaining the efficiency and emissions benefits, is a key objective. With dissimilar properties of the two utilized fuels lying at the heart of the dual-fuel concept, a tool for enabling this load range expansion is altering the properties of the two test fuels - this study focuses on altering the reactivity of the diesel fuel component. Tests were conducted on a 13L six-cylinder heavy-duty diesel engine modified to run dual-fuel combustion with port gasoline injection to supplement the direct diesel injection.
Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Journal Article

Impact of Fuel Properties on Diesel Low Temperature Combustion

2011-04-12
2011-01-0329
Extensive empirical work indicates that exhaust gas recirculation (EGR) is effective to lower the flame temperature and thus the oxides of nitrogen (NOx) production in-cylinder in diesel engines. Soot emissions are reduced in-cylinder by improved fuel/air mixing. As engine load increases, higher levels of intake boost and fuel injection pressure are required to suppress soot production. The high EGR and improved fuel/air mixing is then critical to enable low temperature combustion (LTC) processes. The paper explores the properties of the Fuels for Advanced Combustion Engines (FACE) Diesel, which are statistically designed to examine fuel effects, on a 0.75L single cylinder engine across the full range of load, spanning up to 15 bar IMEP. The lower cetane number (CN) of the diesel fuel improved the mixing process by prolonging the ignition delay and the mixing duration leading to substantial reduction of soot at low to medium loads, improving the trade-off between NOx and soot.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Technical Paper

Effect of Variable Valve Timing on Diesel Combustion Characteristics

2010-04-12
2010-01-1124
This paper investigates the effects of variable valve actuation on combustion in a Diesel engine. Early inlet valve closing (EIVC) lowered the pressure and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogenously with the charge air ahead of combustion. Combustion was characterized by prominent cool flame chemistry and a faster, more energetic, premixed combustion. Tests were performed on a 6.4L V8 engine at loads up to 5 bar BMEP. The use of EIVC showed significant reductions of soot (above 90%) and fuel efficiency improvements (of 5%) with NOx levels below the US 2010 standard of 0.2g/bhp-hr. The improvements in emissions and fuel economy came from controlling in-cylinder temperatures and optimizing combustion phasing. For a constant engine-out NOx emission, EIVC improved fuel economy as the amount of EGR and the engine back pressure requirement were reduced.
Technical Paper

Pad Mount Alternators: Benefits & Advantages and Specification Proposal

2002-03-04
2002-01-1281
The swivel-type hinge mount specified in SAE J180 has been the standard alternator mounting for many years. However, in the mid-1990's on-highway applications began to experience vibration related failures due to casting excitation. This led to the eventual development of a stationary “pad mount” system in combination with an automatic belt tensioner. This paper will review the system component life and benefits of pad mount, and proposes an industry mounting standard for further application usage.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Application of the SRM Engine Suite over the Entire Load-Speed Operation of a U.S. EPA Tier 4 Capable IC Engine

2016-04-05
2016-01-0571
Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
Technical Paper

Effect of Thermal Management on Engine Performance

2018-04-03
2018-01-0224
The effect of engine coolant and oil temperature on the performance was experimentally evaluated on a Navistar 12.4 Liter engine. The engine speed and load selected for evaluation represented the engine conditions typically found during a Class-8 truck’s cruising operation. In order to study the effect of oil and coolant temperature in isolation, the production coolant-cooled oil-cooler was replaced with a separate oil and coolant conditioning system. The piston and liner surface temperature was also logged at select locations to provide solid temperature response to coolant and oil temperature changes. The engine tests showed that oil temperature variation had greater impact on the engine performance compared to the coolant temperature. This performance improvement came primarily from the lower combustion heat rejection and reduced friction at moderate engine loads. At higher engine loads the performance improvement was largely due to lowered heat rejection.
Technical Paper

Advanced Combustion for Improved Thermal Efficiency in an Advanced On-Road Heavy Duty Diesel Engine

2018-04-03
2018-01-0237
For internal combustion engines, the compression ratio (r) is defined as the ratio of volume at bottom dead center to the volume at top dead center and is a fundamental design parameter influencing the thermodynamic operation of the modern combustion engine. Thermodynamic cycle analysis can show that thermal efficiency increases as the compression ratio increases. An increase in the compression ratio changes the cycle such that peak compression pressure and temperatures are increased resulting in subsequent increases in the peak combustion pressure and temperature. Since the average temperature of heat addition is increased in the cycle, the thermal efficiency would theoretically increase as long as both cycles had the same heat rejection processes. These changes in peak pressure and temperature of the cycle must also be evaluated in terms of anticipated increases in engine friction and changes to the combustion duration respectively.
Technical Paper

Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation

2013-04-08
2013-01-0156
It is a time and cost consuming way to physically develop Hybrid Electric Vehicle (HEV) supervisor controller due to the increasing complexity of powertrain system. This study aims to investigate the HEV supervisor controller development process using dSPACE midsize Hardware in the Loop simulation system (HIL) for HEV powertrain control. The prototyping controller was developed on basis of MircoAutoBox II, and an HIL test bench was built on midsize HIL machine for the purpose of verification. The feasibility and capability of HIL were attested by the prototyping control strategy and fault modes simulation. The proposed approach was demonstrated its effectiveness and applicability to HEV supervisor controller development.
Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
Technical Paper

Comparison of Total Fatigue Life Predictions of Welded and Machined A36 Steel T-Joints

2019-04-02
2019-01-0527
A new total fatigue life methodology was utilized to make fatigue life predictions, where total fatigue life is defined as crack initiation and subsequent crack propagation to a crack of known size or the component’s inability to carry load. Fatigue life predictions of an A36 steel T-joint geometry were calculated using the same total fatigue life methodology for both welded and machined test specimens that have the same geometry. The only significant difference between the two analyses was the inclusion of the measured weld residual stresses in the welded specimen life predictions. Constant amplitude tests at several load levels and R ratios were analyzed along with block cycle and variable amplitude loading tests. The accuracy of the life predictions relative to experimental test lives was excellent, with most within a factor of +/- two.
Technical Paper

The Characterisation of a Centrifugal Separator for Engine Cooling Systems

2015-04-14
2015-01-1693
It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
Technical Paper

Non-classical Orifice Characterization

2014-04-01
2014-01-1431
The characterization of fuel injector orifices is important for engine performance engineers, combustion engineers, and as input into 3-D spray and combustion simulations. Typical steady flow measurements done by fuel injector manufacturers are not indicative of their flow at engine injection pressures. Orifice characterization is commonly done on a rate bench or for further detail by using momentum rate measurements. The common Bernoulli equation assumptions made for momentum rate measurements are not always proper. This work compares the common approach with a more detailed approach for calculating the nozzle flow coefficients and sac pressure. The detailed approach includes friction and contraction pressure losses. A discussion on sac velocity is included. A non-iterative calculation of the Darcy friction factor is reviewed and an uncertainty analysis is also provided.
Technical Paper

The State of the Art in Selective Catalytic Reduction Control

2014-04-01
2014-01-1533
Selective Catalytic Reduction (SCR) is a leading aftertreatment technology for the removal of nitrogen oxide (NOx) from exhaust gases (DeNOx). It presents an interesting control challenge, especially at high conversion, because both reagents (NOx and ammonia) are toxic, and therefore an excess of either is highly undesirable. Numerous system layouts and control methods have been developed for SCR systems, driven by the need to meet future emission standards. This paper summarizes the current state-of-the-art control methods for the SCR aftertreatment systems, and provides a structured and comprehensive overview of the research on SCR control. The existing control techniques fall into three main categories: traditional SCR control methods, model-based SCR control methods, and advanced SCR control methods. For each category, the basic control technique is defined. Further techniques in the same category are then explained and appreciated for their relative advantages and disadvantages.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Book

Glass Engineering: Design Solutions for Automotive Applications

2014-04-07
The art and science of glass engineering, specifically applied to automotive projects, are not at all commonplace. Although windshields, side and backlites seem to be obvious parts of any car, truck, or bus, designing, sourcing, and manufacturing them are unique challenges. From the business perspective, cost control makes the choice of the ideal supplier a vital decision, greatly impacting availability and production. From the technical standpoint, the most creative designs can be rendered impractical due to regulations, lack of economies of scale, or convoluted logistics. Glass Engineering: Design Solutions for Automotive Applications tackles all these variables using a no-nonsense, step-by-step approach. Written by Lyn R. Zbinden, a mechanical engineer and glass specialist, this book narrows the gap between the reader and a technical subject by using language that is easy to understand, a good variety of examples, and a series of invaluable reference design tables.
X