Refine Your Search

Topic

Author

Search Results

Journal Article

Verification of Flag Usage Patterns by Static Analysis Techniques

2014-04-01
2014-01-0180
A flag is a global boolean variable used to achieve synchronization between various tasks of an embedded system. An application implementing flags performs actions or events based on the value of the flags. If flag variables are not implemented properly, certain synchronization related issues can arise which can lead to unexpected behavior or failure of the underlying system. In this paper, we present an automated verification technique to identify and verify flag usage patterns at an early stage of code development. We propose a two-step approach which consists of: a. identification of all potential flag variables and b. verification of flag usage patterns against predefined set of rules. The results of our experiment demonstrate that the proposed approach reduces the cost and complexity of the flag review process by almost 70%.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

Application of CAE Technology to the Development of Plastic Automotive Components

1991-02-01
910877
The use of CAE software in developing plastic components has advanced rapidly in recent years. This progress has been supported by the development of practical analytical tools, based on the finite element and boundary element methods, and on the dramatic improvements seen in computer performance. Following the introduction of a flow analysis program in 1982, Nissan has developed and implemented advanced programs for use in developing plastic components and has integrated the programs into a unified in-house system. This system is being utilized at the design and manufacturing stages of interior and exterior trim parts and has produced concrete results in different phases of component development. Work is now proceeding on the development of a system that can simultaneously analyze both the component performance and the factors that need to be considered in the manufacturing process.
Technical Paper

A Study of Technology for Assembling Vehicle Endurance Reliability

1991-09-01
911924
The ways in which vehicles are used in the field are continually becoming more diverse. In order to provide the optimum solution with respect to performance and weight, it is necessary to be able to assure vehicle endurance reliability with a high degree of accuracy in relation to the manner of use in each market. This situation has increased the importance of accurately quantifying the ways in which vehicles are used in the field and of designing vehicles with sufficient endurance reliability to match the usage requirements. This report presents a “market model” by which the manner of usage in the field can be treated quantitatively using combinations of environmental factors that influence the road load, drive load and corrosion load, representing typical loads vehicles must withstand.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

A System for Neutralizing Static Electricity on the Human Body in a Vehicle

2008-04-14
2008-01-0786
People often feel discomfort when entering or exiting a vehicle because of a static electric shock. In the electronics industry, ionizers have been developed to prevent electrostatic discharges and contamination sticking around or on circuit components. Ionizers incorporate corona discharge principles to neutralize the static electric field. Using this idea, we developed an in-vehicle system to neutralize the human body charge. To accomplish this, the mechanism by which the human body attains a charge when exiting a vehicle was first defined. That definition was then used to determine the design characteristics of the system.
Technical Paper

Spot-weld Layout Optimization for Body Stiffness by Topology Optimization

2008-04-14
2008-01-0878
In general, the improvement of vehicle body stiffness involves a trade-off with the body weight. The objective of this research is to derive the lightest-weight solution from the original vehicle model by finding the optimized spot-weld layout and body panel thickness, while keeping the body stiffness and number of spot welds constant. As the first step, a method of deriving the optimal layout of spot welds for maximizing body stiffness was developed by applying the topology optimization method. While this method is generally used in shape optimization of continuous solid structures, it was applied to discontinuous spot-weld positions in this work. As a result, the effect of the spot-weld layout on body stiffness was clarified. In the case of the body used for this research, body stiffness was improved by about 10% with respect to torsion and vertical and lateral bending.
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
Technical Paper

Prediction of Seat Vibration with a Seated Human Subject Using a Substructure Synthesis Method

2004-03-08
2004-01-0371
A seat vibration prediction technique using a substructure synthesis method was developed for use in ride comfort evaluations. The human body was modeled as a vibration transfer matrix using the mean apparent mass of human subjects, based on data measured in advance. Seat vibration characteristics were measured with rigid masses on the seat. The measured data and vibration transfer matrix of the human body were synthesized using a substructure synthesis method, to predict vibration of the seat cushion and backrest in an occupant-loaded condition without actually using human subjects. Results showed that seat vibration predicted with this method was very similar to, and more repeatable than, that obtained experimentally with human subjects.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

Numerical Analysis of the Exhaust Gas Flow and Heat Transfer in a Close-Coupled Catalytic Converter System During Warm-Up

2001-03-05
2001-01-0943
A new multidimensional calculation method has been developed to simulate the warm-up characteristics of close-coupled catalytic converter systems. First, a one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate the pulsation gas flow caused by the gas exchange process. The gas flow calculation and a heat transfer calculation are then combined to simulate heat transfer in the exhaust manifold and the catalyst honeycomb under pulsation flow. The predicted warm-up characteristics of the systems examined agreed well with the experimental data. In this simulation, CPU time was reduced greatly through the use of new calculation methods. Finally, the warm-up process of close-coupled catalysts is analyzed in detail with this simulation method. The design requirements for improving warm-up characteristics have been made clear.
Technical Paper

FEM analysis on gap control mechanism in batting process of tailored blank sheets production

2003-10-27
2003-01-2770
Recently tailored blank sheets are widely and very often applied to car body's panels in order to reduce weight and number of automobile parts. The tailored blank sheets are produced by welding more than two metal sheets. The gap between edges of blank sheets before laser welding should be controlled for obtaining good quality tailored blank sheets. Therefore control of gap within 0.1mm between batting two blank sheets for production is one of main subjects for producing tailored blank sheets. This report presents not only a new mechanism on gap control but also a development of Finite Element Method (FEM) analysis for prediction of gap. The new mechanism has been applied successfully to produce good quality tailored blank sheets. The gap prediction simulation can reduce the time for gap control apparatus design.
Technical Paper

Driving Workload Comparison Between Older and Younger Drivers Using the Steering Entropy Method

2002-07-09
2002-01-2080
In this study, an attempt was made to apply the steering entropy method, proposed by Boer and Nakayama as a workload measurement technique, to a comparative evaluation of the workload of older and younger drivers. As the first step, driving simulator tests were conducted to examine a method of making comparisons between subjects whose driving performance differed. The same method was then used in making evaluations during driving tests conducted with an actual vehicle. Under the conditions used in this study, the results indicate that it should be possible to compare driving workloads among different subjects through the combined used of Hp and α. Hp is a quantified value of steering perturbation as an information entropy value that is calculated from a time history of steering angle data. It changes between 0 (no steering perturbation) and 1 (absolute randomness) in a theoretical sense.
Technical Paper

Development of a Highly Efficient Manufacturing Method for a Plastic Intake Manifold

2002-03-04
2002-01-0605
A plastic intake manifold has been developed for the new QR engine. This manifold has an intricate shape owing to its performance and layout requirements. The die slide injection (DSI) method was selected to manufacture this complicated shape using the world's first application of a common mold forming technique for a three-piece structure. This paper describes the manufacturing technology and the measures adopted to ensure the strength of welded parts, which is a key point of this method. The benefits obtained by applying this plastic intake manifold to the new engine are also described.
Technical Paper

Application of Hydroforming Simulation on Development of Automobile Parts

2002-03-04
2002-01-0786
Hydrofrorming is an efficient forming process to produce automotive parts for reducing weight of cars. In order to reduce the period of development of hydrofoming parts, numerical simulation using FEM is applied to evaluate formability. A pipe needs to be bent before hydroforming for forming complicated shape parts. A pipe bending process is also necessary to FEM simulation. In this paper, a highly effective method to create a bent pipe FEM model based on geometrical changing between a pipe before and after bending is proposed. The widely used draw bending process is supposed to be applied. The method can construct the model in a short time. Therefore total computation time can be reduced drastically. The effects of number of integration points and elements to the computed results and springback prediction after bending are also investigated. The proposed method are applied to a actual part, the computed results are in good agreement with the experimental results.
X