Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Journal Article

Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

2014-04-01
2014-01-0791
A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Journal Article

Long Life Axial Fatigue Strength Models for Ferrous Powder Metals

2018-04-03
2018-01-1395
Two models are presented for the long life (107 cycles) axial fatigue strength of four ferrous powder metal (PM) material series: sintered and heat-treated iron-carbon steel, iron-copper and copper steel, iron-nickel and nickel steel, and pre-alloyed steel. The materials are defined at ranges of carbon content and densities using the broad data available in the Metal Powder Industries Federation (MPIF) Standard 35 for PM structural parts. The first model evaluates 107 cycles axial fatigue strength as a function of ultimate strength and the second model as a function of hardness. For all 118 studied materials, both models are found to have a good correlation between calculated and 107 cycles axial fatigue strength with a high Pearson correlation coefficient of 0.97. The article provides details on the model development and the reasoning for selecting the ultimate strength and hardness as the best predictors for 107 cycles axial fatigue strength.
Technical Paper

Measurement and Evaluation of Vacuum Suction Cups Using Digital Image Correlation

2020-04-14
2020-01-0542
As vacuum suction cups are widely used in stamping plants, it becomes urgent and important to understand their performance and failure mode. Vacuum suction cups are employed to lift, move, and place sheet metal instead of human hands. Occasionally the vacuum cups would fail and drop parts, even it would cause expensive delays in the production line. In this research, several types of vacuum cups have been studies and compared experimentally. A new tensile device and test method was developed to measure the pulling force and deformation of vacuum cups. The digital image correlation technique has been adopted to capture and analyze the contour, deformation and strain of the cups under different working conditions. The experimental results revealed that the relevant influential parameters include cup type, pulling force angles, vacuum levels, sheet metal curvatures, etc.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Journal Article

Reliability Estimation for Multiple Failure Region Problems using Importance Sampling and Approximate Metamodels

2008-04-14
2008-01-0217
An efficient reliability estimation method is presented for engineering systems with multiple failure regions and potentially multiple most probable points. The method can handle implicit, nonlinear limit-state functions, with correlated or non-correlated random variables, which can be described by any probabilistic distribution. It uses a combination of approximate or “accurate-on-demand,” global and local metamodels which serve as indicators to determine the failure and safe regions. Samples close to limit states define transition regions between safe and failure domains. A clustering technique identifies all transition regions which can be in general disjoint, and local metamodels of the actual limit states are generated for each transition region.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

Improved Wear Resistance of Austempered Gray Cast Iron Using Shot-Peening Treatment

2020-04-14
2020-01-1098
In this research, ball-on-plate reciprocating sliding wear tests were utilized on austempered and quench-tempered gray cast iron samples with and without shot-peening treatment. The wear volume loss of the gray cast iron samples with different heat treatment designs was compared under equivalent hardness. The phase transformation in the matrix was studied using metallurgical evaluation and hardness measurement. It was found that thin needle-like ferrite became coarse gradually with increasing austempering temperature and was converted into feather-like shape when using the austempering temperatures of 399°C (750°F). The residual stress on the surface and sub-surface before and after shot-peening treatment was analyzed using x-ray diffraction. Compressive residual stress was produced after shot-peening treatment and showed an increasing trend with austempering temperature.
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Experimental and Analytical Study of Drawbead Restraining Force for Sheet Metal Drawing Operations

2020-04-14
2020-01-0753
Design of sheet metal drawing processes requires accurate information about the distribution of restraining forces, which is usually accomplished by a set of drawbeads positioned along the perimeter of the die cavity. This study is targeting bringing together the results of finite element analysis and experimental data in order to understand the most critical factors influencing the restraining force. The experimental study of the restraining force was performed using drawbead simulator tool installed into a tensile testing machine. Based upon the experimental results, it was observed that the restraining force of the given drawbead configuration is dependent upon the depth of bead penetration, friction between the drawbead surfaces as well as the clearance between the flanges of the drawbead simulator. This clearance is often adjusted during stamping operations to increase or decrease material inflow into the die cavity without any modification in the die.
Journal Article

Fatigue Performance and Residual Stress of Carburized Gear Steels Part I: Residual Stress

2008-04-14
2008-01-1424
This particular study focuses on four specific gear steels: SAE 4320, SAE 8822, PS18, and 20MnCr5. Notched specimens are manufactured from the four materials. Three point bending experiments were conducted which include ultimate tests and fatigue tests. Part I is on ultimate test only. Part II will concentrate on fatigue testing. In order to see how the carburization affected the fatigue performance of these steels, a residual stress test was performed on one sample of each steel by mean of the incremental hole drilling method. The compressive stresses were found in all four steels with minimum and maximum stress approximately equal. This suggests that the residual stresses are biaxial in the carburized steel case. The difference between the maximum and minimum stresses is within 37% for all steels. The residual stress after the carburization process were found to be highest in the 4320 steel and SAE 8822, followed by PS 18 and then MnCr.
Technical Paper

Aluminum Foam-Phase Change Material Composites as Heat Exchangers

2007-04-16
2007-01-0419
The effects of geometric parameters of open-cell aluminum foams on the performance of aluminum foam-phase change material (PCM) composites as heat sinks are investigated by experiments. Three types of open-cell aluminum 6061 foams with similar relative densities and different cell sizes are used. Paraffin is selected as the PCM due to its excellent thermal stability and ease of handling. The experimental results show that the performance of the heat sink is significantly affected by the surface area density of the aluminum foam. In general, as the surface area density of the foam increases, the performance of the heat sink is improved regardless of the current phase of the PCM.
Technical Paper

Global Failure Criteria for SOFC Positive/Electrolyte/Negative (PEN) Structure

2007-04-16
2007-01-0997
Due to mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN (positive/electrolyte/ negative) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly.
Technical Paper

The Effects of Hydroforming on the Mechanical Properties and Crush Behaviors of Aluminum Tubes

2007-04-16
2007-01-0986
The effect of hydroforming on the mechanical properties and dynamic crush behaviors of tapered aluminum 6063-T4 tubes with octagonal cross section are investigated by experiments. First, the thickness profile of the hydroformed tube is measured by non-destructive examination technique using ultrasonic thickness gauge. The effect of hydroforming on the mechanical properties of the tube is investigated by quasi-static tensile tests of specimens prepared from different regions of the tube based on the thickness profile. The effect of hydroforming on the dynamic crush behaviors of the tube is investigated by axial crush tests under dynamic loads. Specimens and tubes are tested in two different heat treatment conditions: hydroformed-T4 (as-received) and T6. The results of the quasi-static tensile tests for the specimens in hydroformed-T4 condition show different amounts of work hardening depending on the regions, which the specimens are prepared from.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Technical Paper

Effects of Manufacturing Processes and In-Service mperature Variations on the Properties of TRIP Steels

2007-04-16
2007-01-0793
This paper examines some key aspects of the manufacturing process that “ Transformation Induced Plasticity” (TRIP) steels would be exposed to, and systematically evaluate how the forming and thermal histories affect final strength and ductility of the material. We evaluate the effects of in-service temperature variations, such as under hood and hot/cold cyclic conditions, to determine whether these conditions influence final strength, ductility and energy absorption characteristics of several available TRIP steel grades. As part of the manufacturing thermal environment evaluations, stamping process thermal histories are included in the studies. As part of the in-service conditions, different pre-straining levels are included. Materials from four steel suppliers are examined. The thermal/straining history versus material property relationship is established over a full range of expected thermal histories and selected loading modes.
X