Refine Your Search

Topic

Search Results

Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Journal Article

Modeling of Catalyzed Particulate Filters - Concept Phase Simulation and Real-Time Plant Modeling on HiL

2016-04-05
2016-01-0969
The present work introduces an extended particulate filter model focusing on capabilities to cover catalytic and surface storage reactions and to serve as a virtual multi-functional reactor/separator. The model can be classified as a transient, non-isothermal 1D+1D two-channel model. The applied modeling framework offers the required modeling depth to investigate arbitrary catalytic reaction schemes and it follows the computational requirement of running in real-time. The trade-off between model complexity and computational speed is scalable. The model is validated with the help of an analytically solved reference and the model parametrization is demonstrated by simulating experimentally given temperatures of a heat-up measurement. The detailed 1D+1D model is demonstrated in a concept study comparing the impact of different spatial washcoat distributions.
Technical Paper

Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train

2001-08-20
2001-01-2532
A general design methodology of the fuel cell powered hybrid vehicle drive train has been developed. With the methodology and a computer simulation program, all of the systematic parameters can be designed, such as, the rated power of the electric motor drive, fuel cell system, peaking power source as well as the energy capacity. An overall control strategy has also been developed. The main function of the control strategy is to properly control the power produced by the fuel cell system and the peaking power source, so as to meet the power demand, maintain the energy level of the peaking power source in its optimal region and operate the fuel cell system within its high efficiency region. In this paper, a design example has also been introduced in each section.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Heat Release Parameters to Assess Low Temperature Combustion Attainment

2011-04-12
2011-01-1350
Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine-out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species of notoriety for their difficulty in after-treatment removal. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). This paper presents an investigation into the manifestation of LTC in the calculated heat release profile. Such a study could be important since some extreme LTC conditions may exhibit a return to the soot-NOx tradeoff, rendering an emissions-based definition of LTC unhelpful.
Technical Paper

Real Time Capable Pollutant Formation and Exhaust Aftertreatment Modeling-HSDI Diesel Engine Simulation

2011-04-12
2011-01-1438
Modern Diesel engines require an integrated development of combustion strategies, air management and exhaust aftertreatment. This study presents a comprehensive simulation approach with the aim to support engine development activities in the virtual environment. A real-time capable engine, vehicle and control model is extended by three key features. First, a pollutant production model is embedded in a two-zone cylinder model. Second, a framework for catalytic pollutant conversion is built focusing on modern diesel exhaust aftertreatment systems. Third, an extended species transport model is introduced considering the transport of pollutants through the air path. The entire plant model is validated on the example of a passenger car Diesel engine. The predicted engine behavior is compared with steady-state measurements. The NO formation model is investigated for a series of steady-state and transient operating conditions.
Technical Paper

Nozzle Flow and Cavitation Modeling with Coupled 1D-3D AVL Software Tools

2011-09-11
2011-24-0006
The paper is devoted to the coupled 1D-3D modeling technology of injector flow and cavitation in diesel injections systems. The technology is based on the 1D simulation of the injector with the AVL software BOOST-HYDSIM and 3D modeling of the nozzle flow with AVL FIRE. The nozzle mesh with spray holes and certain part of the nozzle chamber is created with the FIRE preprocessor. The border between the 1D and 3D simulation regions can be chosen inside the nozzle chamber at any position along the needle shaft. Actual coupling version of both software tools considers only one-dimensional (longitudinal) needle motion. Forthcoming version already includes the two-dimensional motion of the needle. Furthermore, special models for the needle tip contact with the nozzle seat and needle guide contact with the nozzle wall are developed in HYDSIM. The co-simulation technology is applied for different common rail injectors in several projects.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
Technical Paper

MiL-Based Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Prediction during Dynamic Warm-Up Tests (NEDC)

2012-04-16
2012-01-0432
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e. g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure - consisting of a number of global data-based sub-models - is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Technical Paper

A Comprehensive Study on Different System Level Engine Simulation Models

2013-04-08
2013-01-1116
Engine simulation can be performed using model approaches of different depths in capturing physical effects. The present paper presents a comprehensive comparison study on seven different engine models. The models range from transient 1D cycle resolved approaches to steady-state non-dimensional maps. The models are discussed in the light of key features, amount and kind of required input data, model calibration effort and predictability and application areas. The computational performance of the different models and their capabilities to capture different transient effects is investigated together with a vehicle model under real-life driving conditions. In the trade-off field of model predictability and computational performance an innovative approach on crank-angle resolved cylinder modeling turned out to be most beneficial.
Technical Paper

Atomization of Coal Water Slurry Sprays

1994-03-01
940327
The atomization of coal water slurry (CWS) sprays is modeled using the aerodynamic theory of atomization. Several extensions to the theory have been explored to account for the non-Newtonian behavior of the slurry. For comparison with experiment the following spray parameters are identified; spray angle, intact core length, drop diameters, and velocities of drops and gas. Results from computer simulations that use the CWS atomization model have been compared with recent experimental data, particularly with the transient development of the spray. Good agreement between experiments and computations has been found.
Technical Paper

An Empirically Based Electrosource Horizon Lead-Acid Battery Model

1996-02-01
960448
A empirically based mathematical model of a lead-acid battery for use in the Texas A&M University's Electrically Peaking Hybrid (ELPH) computer simulation is presented. The battery model is intended to overcome intuitive difficulties with currently available models by employing direct relationships between state-of-charge, voltage, and power demand. The model input is the power demand or load. Model outputs include voltage, an instantaneous battery efficiency coefficient and a state-of-charge indicator. A time and current dependent voltage hysteresis is employed to ensure correct voltage tracking inherent with the highly transient nature of a hybrid electric drivetrain.
Technical Paper

A Versatile Computer Simulation Tool for Design and Analysis of Electric and Hybrid Drive Trains

1997-02-24
970199
This paper discusses a new computer simulation tool, V-Elph, which extends the capabilities of previous modeling and simulation efforts by facilitating in-depth studies of any type of hybrid or all electric configuration or energy management strategy through visual programming and by creating components as hierarchical subsystems which can be used interchangeably as embedded systems. V-Elph is composed of detailed models of four major types of components: electric motors, internal combustion engines, batteries, and vehicle dynamics which can be integrated to simulate drive trains having all electric, series hybrid, and parallel hybrid configurations. V-Elph was written in the Matlab/Simulink graphical simulation language and is portable to most computer platforms. A simulation study of a sustainable, electrically-peaking hybrid-electric vehicle was performed to illustrate the applicability of V-Elph to hybrid and electric vehicle design.
Technical Paper

An Investigation into the Effect of Fuel Injection System Improvements on the Injection and Combustion of DiMethyl Ether in a Diesel Cycle Engine

2014-10-13
2014-01-2658
For nearly twenty years, DiMethyl Ether has been known to be an outstanding fuel for combustion in diesel cycle engines. Not only does it have a high Cetane number, it burns absolutely soot free and produces lower NOx exhaust emissions than the equivalent diesel. However, the physical properties of DME such as its low viscosity, lubricity and bulk modulus have negative effects for the fuel injection system, which have both limited the achievable injection pressures to about 500 bar and DME's introduction into the market. To overcome some of these effects, a common rail fuel injection system was adapted to operate with DME and produce injection pressures of up to 1000 bar. To understand the effect of the high injection pressure, tests were carried out using 2D optically accessed nozzles. This allowed the impact of the high vapour pressure of DME on the onset of cavitation in the nozzle hole to be assessed and improve the flow characteristics.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

High Power Discharge Combustion Effects on Fuel Consumption, Emissions, and Catalyst Heating

2014-10-13
2014-01-2626
A key element to achieving vehicle emission certification for most light-duty vehicles using spark-ignition engine technology is prompt catalyst warming. Emission mitigation largely does not occur while the catalyst is below its “light-off temperature”, which takes a certain time to achieve when the engine starts from a cold condition. If the catalyst takes too long to light-off, the vehicle could fail its emission certification; it is necessary to minimize the catalyst warm up period to mitigate emissions as quickly as possible. One technique used to minimize catalyst warm up is to calibrate the engine in such a way that it delivers high temperature exhaust. At idle or low speed/low-load conditions, this can be done by retarding spark timing with a corresponding increase in fuel flow rate and / or leaning the mixture. Both approaches, however, encounter limits as combustion stability degrades and / or nitrogen oxide emissions rise excessively.
Technical Paper

Biodiesel Imposed System Responses in a Medium-Duty Diesel Engine

2010-04-12
2010-01-0565
The often-observed differences in nitrogen oxides, or NOx, emissions between biodiesel and petroleum diesel fuels in diesel engines remain intense topics of research. In several instances, biodiesel-fuelled engines have higher NOx emissions than petroleum-fuelled engines; a situation often referred to as the "biodiesel NOx penalty." The literature is rich with investigations that reveal many fundamental mechanisms which contribute to (in varying and often inverse ways) the manifestation of differences in NOx emissions; these mechanisms include, for example, differences in ignition delay, changes to in-cylinder radiation heat transfer, and unequal heating values between the fuels. In addition to fundamental mechanisms, however, are the effects of "system-response" issues.
X