Refine Your Search

Topic

Author

Search Results

Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Journal Article

Detection of Unintended Acceleration in Longitudinal Car Following

2015-04-14
2015-01-0208
This paper presents a model-based approach to detect unintended acceleration (UA) as well as other vehicle problems. A diagnostic system is formulated by detecting several specific vehicle events such as acceleration peaks and gear shifting. Mathematical models are created for these events based on simulation data and the final diagnostic conclusion is drawn from the voting result of all these models. The detection algorithm is validated using independent data sets obtained from Matlab/Simulink. A three dimensional vehicle model is built to implement traffic simulation. Vehicle problems and drivers' reactions are simulated and added during the process. Sensor noise is also considered and corresponding filters are designed and applied. The results show that the fault diagnostic system is successful in detecting UA.
Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

The Prospect and Benefits of Using the Partial-Averaged Navier-Stokes Method for Engine Flows

2020-04-14
2020-01-1107
This paper presents calculations of engine flows by using the Partially-Averaged Navier Stokes (PANS) method (Girimaji [1]; [2]). The PANS is a scale-resolving turbulence computational approach designed to resolve large scale fluctuations and model the remainder with appropriate closures. Depending upon the prescribed cut-off length (filter width) the method adjusts seamlessly from the Reynolds-Averaged Navier-Stokes (RANS) to the Direct Numerical Solution (DNS) of the Navier-Stokes equations. The PANS method was successfully used for many applications but mainly on static geometries, e.g. Basara et al. [3]; [4]. This is due to the calculation of the cut-off control parameter which requires that the resolved kinetic energy is known and this is usually obtained by suitably averaging of the resolved field. Such averaging process is expensive and impractical for engines as it would require averaging per cycles.
Technical Paper

HEV Evaluation in Simulation Phase Based on Predicted Sound Behavior

2020-09-30
2020-01-1511
Grown interest in complex modern Hybrid Electric Vehicle (HEV) concepts has raised new challenges in the field of NVH. The switch between the Internal Combustion Engine (ICE) and the Electric Motor (EM) at low speeds produces undesirable vibrations and a sudden raise of noise levels that effects the sound quality and passenger comfort achieved by the close-to-silent electric powertrain operation. Starting the ICE in the most suitable driving situation to create a seamless transition between driving modes can be the key to minimize the NVH quality impact in driver and passenger’s perception in HEVs. To integrate this important aspect in the early stages of the development and design phase, simulation technologies can be used to address the customer acceptance. By analyzing NVH measurements, the different noise components of the vehicle operation can be separated into ICE-related noise, EM-related noise and driving noise.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Technical Paper

Advanced CAE Methods for NVH Development of High-Speed Electric Axle

2020-09-30
2020-01-1501
The rate in the electrification of vehicles has risen in recent years. With intensified development more and more attention is paid to the noise and vibration in such vehicles especially from the EDU (Electric Drive Unit). In this paper the main NVH simulation process of a high-speed E-axle up to 30,000 rpm for premium class vehicle application is presented. The high speed, high-power density and lightweight design introduces new challenges. Benchmarking of different EDUs and vehicles leads to targets which can be used at the early stage of development as subsystem targets. This paper shows the CAE methodology which can be used to verify the design and guarantee the target achievement. Using CAE both source and structure can be optimized to improve the NVH behavior.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
The automotive domain has seen safety engineering at the forefront of the industry’s priorities for the last decade. Therefore, additional safety engineering efforts, design approaches, and well-established safety processes have been stipulated. Today many connected and automated vehicles are available and connectivity features and information sharing are increasingly used. This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles.
Technical Paper

FCEV Performance Assessment - Electrochemical Fuel Cell and Battery Modelling on Vehicle Level

2020-04-14
2020-01-0857
Fuel cell electric vehicles are a promising technology to create CO2- neutral mobility. Model-based development approaches are key to reduce costs and to raise efficiencies. A model on vehicle system level is discussed that balances the need of physical depth and computational performance. The vehicle model comprises the domains of mechanics, electrics, thermodynamics, cooling and controls. Detailed models of the fuel cell and battery are presented as a part of the system model. The models apply electrochemical approaches and spatial resolutions up to 3D. The models of both components are validated via 3D reference simulations showing a seamless parameter transfer between system level and CFD-based simulations. The validity of the vehicle model, including the electrochemical components, is demonstrated by simulating the Toyota Mirai vehicle. Simulation results of an NEDC are compared to measurements.
Journal Article

Improved Comfort Analysis and Drivability Assessment by the Use of an Extended Power Train Model for Automatic Transmissions

2012-06-13
2012-01-1529
The new generation of automatic transmissions is characterized by a compact and highly efficient design. By the use of a higher overall gear ratio and lightweight components combined with optimal gear set concepts it is possible to improve significantly fuel consumption and driving dynamics. Precise and efficient real time models of the whole power train including models for complex subsystems like the automatic transmission are needed to combine real hardware with virtual models on XiL test rigs. Thereby it's possible to achieve a more efficient product development process optimized towards low development costs by less needed prototypes and shorter development times by pushing front loading in the process. In this paper a new real time model for automatic transmissions including approved models for the torque converter, the lock-up clutch and the torsional damper are introduced. At the current development stage the model can be used for comfort analysis and drivability assessment.
Technical Paper

Influence of Low-Frequency Powertrain-Vibrations on Driveability-Assessments

2010-06-09
2010-01-1419
Cost- and time-efficient vehicle development is increasingly depending on the usage of adequate software tools to enhance effectiveness. The aim is a continuous integration of simulation tools and test environments within the vehicle development process in order to save time and costs. This paper introduces a procedure to reveal the cause of low-frequency powertrain vibrations and the influences on the dynamic behavior of a vehicle on a roller test bench. The affected longitudinal acceleration signal is an arbitrative criterion for the driveability assessment with AVL-DRIVE™, a well-known driveability analysis and development tool for the objective assessment concerning NVH and driveability aspects of full vehicles. These experimental studies are embedded into an approach, which describes the functional assembly of three applied test environments "road," "roller test bench" and "simulation" with according tools in order to facilitate an integrated driveability development process.
Technical Paper

Thermal Analysis of Carbon Nanotubes Suspended in PAO Mixtures

2010-11-02
2010-01-1732
Poly Alpha Olefins (PAO) are extensively used as cooling fluid for thermal management in avionics cooling applications owing to their superior physical and chemical properties, such as greater fluidity at low temperature, lower volatility, a higher viscosity index, lower pour point, better oxidative and thermal stability as well as low toxicity. Solvents doped with minute concentration of nanoparticles are termed as “Nanofluid”. Anomalous enhancements in thermo-physical property values as well as in heat transfer performance of nanofluids have been reported using nanofluids (compared to that for the neat solvent). The thermal interfacial resistance between the nanoparticle and the solvent molecules (Kapitza Resistance) is the dominant factor controlling the efficacy of the nanofluids for cooling applications.
Technical Paper

42V Automotive Power Systems

2001-08-20
2001-01-2465
With the increase of hotel and ancillary loads and replacement of engine driven mechanical and hydraulic loads with electrical loads, automotive systems are becoming more electric. This is the concept of More Electric Cars (MEC) that necessitates a higher system voltage, such as the proposed 42V, for conventional cars. In this paper, the development of the 42V electric power system for vehicle applications is reviewed. The system architecture and motor drive problems associated with the 42V electric power system are analyzed. Solutions to these problems are also discussed.
Technical Paper

Electronic Braking System of EV And HEV---Integration of Regenerative Braking, Automatic Braking Force Control and ABS

2001-08-20
2001-01-2478
The desirable braking system of a land vehicle is that it can stop the vehicle or reduce the vehicle speed as quickly as possible, maintain the vehicle direction stable and recover kinetic energy of the vehicle as much as possible. In this paper, an electronically controlled braking system for EV and HEV has been proposed, which integrates regenerative braking, automatic control of the braking forces of front and rear wheels and wheels antilock function together. When failure occurs in the electric system, the braking system can function as a conventional man-actuated braking system. Control strategies for controlling the braking forces on front and rear wheels, regenerative braking and mechanical braking forces have been developed. The braking energy that can be potentially recovered in typical driving cycle has been calculated. The antilock performance of the braking system has been simulated.
Technical Paper

Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train

2001-08-20
2001-01-2532
A general design methodology of the fuel cell powered hybrid vehicle drive train has been developed. With the methodology and a computer simulation program, all of the systematic parameters can be designed, such as, the rated power of the electric motor drive, fuel cell system, peaking power source as well as the energy capacity. An overall control strategy has also been developed. The main function of the control strategy is to properly control the power produced by the fuel cell system and the peaking power source, so as to meet the power demand, maintain the energy level of the peaking power source in its optimal region and operate the fuel cell system within its high efficiency region. In this paper, a design example has also been introduced in each section.
Technical Paper

Investigation of Hybrid Drive Trains for Railway Vehicles

2001-08-20
2001-01-2525
The concept of hybrid drive trains was first developed for automobiles. These drive trains allow achieving a minimum fuel consumption by properly matching the driving requirements and the engine characteristics. In this paper the authors analyze the possibility of extending this concept to railway vehicles. Basic hybrid railway vehicles are designed and discussed.
Technical Paper

Design Issues of the Switched Reluctance Motor Drive for Propulsion and Regenerative Braking in EV and HEV

2001-08-20
2001-01-2526
There is a growing interest in electric and hybrid electric vehicles (EV and HEV) due to their high efficiency and low emission. In EV and HEV, the characteristic of the traction motor is essential for the performance and efficiency of the EV and HEV. In this paper, the advantages of the extended constant power range characteristic of the traction motor for both propulsion and regenerative braking are analyzed. Simulation results are presented to verify the conclusions. Due to its several inherent advantages, especially its capability of having an extended constant power range, Switched Reluctance Motor (SRM) is proposed as the candidate of the traction motor in EV and HEV. The design methodology of SRM for achieving an extended constant power range and the control strategy of SRM for regenerative braking in EV and HEV are presented.
X