Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Journal Article

The Impact of Gear Meshing Nonlinearities on the Vehicle Launch Shudder

2015-04-14
2015-01-0610
During the launch of a car, severe torsional vibration sometimes may occur in its driveline due to somewhat the slipping of the clutch, its intuitive sense for an occupant is the longitudinal vibration of the vehicle, referred to as the launch shudder whose characteristic frequency is from 5 to 25 Hz generally. As the main vibration sources of the driveline and its crucial nonlinear components, the variable stiffness and backlash of the gear meshing are considered, their impacts on the launch shudder are analyzed in this paper. Conformal mapping, finite element method and regression method etc. are the main approaches to calculate the variable meshing stiffness of a gear pair. If this stiffness is get, it can usually be substituted for its approximate analytical expression, just with finite harmonic terms, in Fourier Series form into Ordinary Differential Equations(ODEs) to calculate the vehicle responses with its nonlinearity considered.
Technical Paper

State-of-the-Art and Development Trends of Assembly Technologies for Proton Exchange Membrane Fuel Cell Stack: A Review

2020-04-14
2020-01-1175
Proton Exchange Membrane Fuel Cell (PEMFC) uses hydrogen and oxygen for fuel, the whole energy conversion process almost has no negative impact on the environment. The PEM fuel cell stack with the advantages of low-operating temperature, high current density and fast start-up ability is considered to be the next generation of new electric vehicle power. However, due to the limited current output, it is difficult for a single cell to meet the practical application requirements. The actual fuel cell stack is formed by many single cells assembled together. The assembly process is often related to load transfer, material transfer, energy exchange, multi-phase flow, electrochemical reaction and other factors. The performance of MEA (Membrane Electrode Assembly), sealing gaskets and other components will change during the assembly process, which makes the fuel cell stack assembly process more complex.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Journal Article

Uncertainty Optimization of Thin-walled Beam Crashworthiness Based on Approximate Model with Step Encryption Technology

2016-04-05
2016-01-0404
Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

Active and Passive Control of Torsional Vibration in Vehicle Hybrid Powertrain System

2020-04-14
2020-01-0408
The vibration characteristics of hybrid vehicles are very different from that of traditional fuel vehicles. In this paper, the active and passive control schemes are used to inhibit the vibration issues in vehicle hybrid powertrain system. Firstly the torsional vibration mechanical model including engine, motor and planetary gear subsystems is established. Then the transient vibration responses of typical working condition are analyzed through power control strategy. Consequently the active and passive control of torsional vibration in hybrid powertrain system is proposed. The active control of the motor and generator torque is designed and the vehicle longitudinal vibration is reduced. The vibration of the planetary gear system is ameliorated with passive control method by adding torsional vibration absorbers to power units. The vibration characteristics in vehicle hybrid powertrain system are effectively improved through the active and passive control.
Technical Paper

System Evaluation Method for Two Planetary Gears Hybrid Powertrain under Gray Relational Analysis Based on Fuzzy AHP and Entropy Weight Method

2020-04-14
2020-01-0430
Millions of configurations of power-split hybrid powertrain can be generated due to variation in number of planetary-gear sets (PG), difference in number, type and installation location of shift actuators (clutches or brakes), and difference in connection positions of power components. Considering the large number of configurations, complex structures and control modes, it is vital to construct an appropriate multi-index system evaluation method, which directly affects the requirement fulfillment, the time and cost of 2-PG system configuration design. Considering one-sidedness (dynamics and economic performance), simplicity (linear combination of indicators) and subjectivity (relying on expert experience) of previous system evaluation method of 2-PG system design, a more systematic evaluation method is proposed in this paper. The proposed evaluation system consists of five aspects, involving dynamic, economy, comfort, reliability and cost, and more than 20 indexes.
Technical Paper

Starting Process Control of a 2-Cylinder PFI Gasoline Engine for Range Extender

2020-04-14
2020-01-0315
With the increasing worldwide concern on environmental pollution, battery electrical vehicles (BEV) have attracted a lot attention. However, it still couldn’t satisfy the market requirements because of the low battery power density, high cost and long charging time. The range-extended electrical vehicle (REEV) got more attention because it could avoid the mileage anxiety of the BEVs with lower cost and potentially higher efficiency. When internal combustion engine (ICE) works as the power source of range extender (RE) for REEV, its NVH, emissions in starting process need to be optimized. In this paper, a 2-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially connected. Meanwhile, batteries and load systems were equipped. The RE co-control system was developed based on Compact RIO (Compact Reconfigurable IO), Labview and motor control unit (MCU).
Technical Paper

Investigation of the Operating Conditions on the Water and Thermal Management for a Polymer Electrolyte Membrane Fuel Cell by One-Dimensional Model

2020-04-14
2020-01-0856
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC.
Technical Paper

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

2020-04-14
2020-01-0866
The thermophysical parameters and amount of composite phase change materials (PCMs) have decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Journal Article

Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures

2011-04-12
2011-01-1057
Hot forming process of ultrahigh strength boron steel 22MnB5 is widely applied in vehicle industry. It is one of the most effective approaches for vehicle light weighting. Dynamic recovery is the major softening mechanism of the boron steel under austenite state at elevated temperatures. Deformation mechanism of the boron steel can be revealed by investigation on the behavior of dynamic recovery, which could also improve the accuracy of forming simulations for hot stamping. Uniaxial tensile experiments of the boron steel are carried out on the thermo-mechanical simulator Gleeble3800 at elevated temperatures. The true stress-strain curves and the relations between the work hardening rate and flow stress are obtained in different deformation conditions. The work hardening rate decreases linearly with increasing the flow stress.
Technical Paper

Dynamic-Static Optimization Design with Uncertain Parameters for Lift Arm of Parking Robot

2020-04-14
2020-01-0511
There are a large number of uncertainties in engineering design, and the accumulated uncertainties will enlarge the overall failure probability of the structure system. Therefore, structural design considering uncertainties has good guiding significance for improving the reliability of engineering structures. To address this issue, the dynamic-static structural topology optimization is established and reliability-based topology optimization with decoupling format is conducted in this study. The design point which satisfying the constraint of the target reliability indicator is obtained according to the reliability indicators of the first-order reliability method, and the uncertain design variables are modified into a deterministic variable according to the sensitivity information.
Technical Paper

The Effect of Unfine-Tuned Super-Resolution Networks Act on Object Detection

2020-02-24
2020-01-5034
In order to explore approaches for improving object detection accuracy in intelligent vehicle system, we exploit super-resolution techniques. A novel method is proposed to confirm the conjecture whether some popular super-resolution networks used for environmental perception of intelligent vehicles and robots can indeed improve the detection accuracy. COCO dataset which contains images from complex ordinary environment is utilized for the verification experiment, due to it can adequately verify the generalization of each algorithm and the consistency of experimental results. Using two representative object detection networks to produce the detection results, namely Faster R-CNN and YOLOv3, we devise to reduce the impact of resizing operation. The two networks allow us to compare the performance of object detection between using original and super-resolved images. We quantify the effect of each super-resolution techniques as well.
Technical Paper

Investigation of Radiation and Conjugate Heat Transfers for Vehicle Underbody

2008-06-23
2008-01-1819
A computational study was conducted in order to characterize the heat transfers in a sedan vehicle underbody and the exhaust system. A steady-state analysis with consideration for both the radiation and conjugate heat transfers was undertaken using the High-Reynolds formulation of the k-epsilon turbulence model with standard wall function and the DO model for the radiation heat transfer. All three mechanisms of heat transfer, i.e., convection, conduction, and radiation, were included in the analysis. The convective heat transfer due to turbulent fluid motion was modeled with the assumption of constant turbulent Prandtl number; and heat conduction was solved directly for both fluid and solid.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
X