Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

SID Response Data in a Side Impact Sled Test Series

1992-02-01
920350
Heidelberg-type side impact sled tests were conducted using SID side impact dummies. These tests were run under similar conditions to a series of cadaveric sled tests funded by the Centers for Disease Control in the same lab. Tests included 6.7 and 9 m/s (15 and 20 mph) unpadded and 9 m/s padded tests. The following padding was used at the thorax: ARSAN, ARCEL, ARPAK, ARPRO, DYTHERM, 103 and 159 kPa (15 and 23 psi) crush strength paper honeycomb, and an expanded polystyrene. In all padded tests the dummy Thoracic Trauma Index, TTI(d) was below the value of 85 set by federal rulemaking (49 CFR, Part 571 et al., 1990). In contrast, cadavers in 9 m/s sled tests did not tolerate ARSAN 601 (MAIS 5) and 23 psi (159 kPa) paper honeycomb (MAIS 5), and 20 psi (138 kPa) Verticel™ honeycomb (MAIS 4), but tolerated 15 psi (103 kPa) paper honeycomb (average thoracic MAIS 2.3 in six tests).
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Finite Element Modeling of Direct Head Impact

1993-11-01
933114
A 3-D finite element human head model has been developed to study the dynamic response of the human head to direct impact by a rigid impactor. The model simulated closely the main anatomical features of an average adult head. It included the scalp, a three-layered skull, cerebral spinal fluid (CSF), dura mater, falx cerebri, and brain. The layered skull, cerebral spinal fluid, and brain were modeled as brick elements with one-point integration. The scalp, dura mater, and falx cerebri were treated as membrane elements. To simulate the strain rate dependent characteristics of the soft tissues, the brain and the scalp were considered as viscoelastic materials. The other tissues of the head were assumed to be elastic. The model contains 6080 nodes, 5456 brick elements, and 1895 shell elements. To validate the head model, it was impacted frontally by a cylinder to simulate the cadaveric tests performed by Nahum et. al. (8).
Technical Paper

Dynamic Human Ankle Response to Inversion and Eversion

1993-11-01
933115
There are many mechanisms for ankle injury to front seat occupants involved in automotive impacts. This study addresses injuries to the ankle joint involving inversion or eversion, in particular at high rates of loading such as might occur in automotive accidents. Injuries included unilateral malleolar fractures and ligament tears, and talus and calcaneous avulsions. Twenty tests have been performed so far, two of them using Hybrid III lower leg and the rest using cadaveric specimens. The specimens were loaded dynamically on the bottom of the foot via a pneumatic cylinder in either an inversion or eversion direction at fixed dorsiflexion and plantarflexion angles. The applied force and accelerations have been measured as well as all the reaction forces and moments. High-speed film was used to obtain the inversiordeversion angle of the foot relative to the tibia and for following ligament stretch.
Technical Paper

An Evaluation of TTI and ASA in SID Side Impact Sled Tests

1994-11-01
942225
Thirty-seven SID side impact sled tests were performed using a rigid wall and a padded wall with fourteen different padding configurations. The Thoracic Trauma Index (TTI) and Average Spine Acceleration (ASA) were measured in each test. TTI and ASA were evaluated in terms of their ability to predict injury in identical cadaver tests and in terms of their ability to predict the harm or benefit of padding of different crush strengths. SID ASA predicted the injury seen in WSU-CDC cadaver tests better than SID TTI. SID ASA predicted that padding of greater than 20 psi crush strength is harmful (ASA > 40 g's). SID TTI predicted that padding of greater than 20 psi crush strength is beneficial (TTI < 85 g's). SID TTI predicts the benefit of lower impact velocity. However, SID ASA appears more useful in assessing the harm or benefit of door padding or air bags.
Technical Paper

Biofidelity and Injury Assessment in Eurosid I and Biosid

1995-11-01
952731
Side impact pendulum tests were conducted on Eurosid I and Biosid to assess the biofidelity of the thorax, abdomen and pelvis, and determine injury tolerance levels. Each body region was impacted at 4.5, 6.7, and 9.4 m/s using test conditions which duplicate cadaver impacts with a 15 cm flat-circular 23.4 kg rigid mass. The cadaver database establishes human response and injury risk assessment in side impact. Both dummies showed better biofidelity when compared to the lowest-speed cadaver response corridor. At higher speeds, peak force was substantially higher. The average peak contact force was 1.56 times greater in Biosid and 2.19 times greater in Eurosid 1 than the average cadaver response. The Eurosid I abdomen had the most dissimilar response and lacks biofidelity. Overall, Biosid has better biofidelity than Eurosid I with an average 21% lower peak load and a closer match to the duration of cadaver impact responses for the three body regions.
Technical Paper

On the Role of Cervical Facet Joints in Rear End Impact Neck Injury Mechanisms

1997-02-24
970497
After a rear end impact, various clinical symptoms are often seen in car occupants (e.g. neck stiffness, strain, headache). Although many different injury mechanisms of the cervical spine have been identified thus far, the extent to which a single mechanism of injury is responsible remains uncertain. Apart from hyperextension or excessive shearing, a compression of the cervical spine can also be seen in the first phase of the impact due to ramping or other mechanical interactions between the seat back and the spine. It is hypothesized that this axial compression, together with the shear force, are responsible for the higher observed frequency of neck injuries in rear end impacts versus frontal impacts of comparable severity. The axial compression first causes loosening of cervical ligaments making it easier for shear type soft tissue injuries to occur.
Technical Paper

Proposed Provisional Reference Values for the Humerus for Evaluation of Injury Potential

1996-11-01
962416
A humerus provisional reference value (PRV) based on human surrogate data was developed to help evaluate upper arm injury potential. The proposed PRV is based on humerus bone bending moments generated by testing pairs of cadaver arms to fracture in three-point bending on an Instron testing machine in either lateral-medial (L-M) or anterior-posterior (A-P) loading, at 218 mm/s and 0.635 mm/s loading rates. The results were then normalized and scaled to 50th and 5th percentile sized occupants. The normalized average L-M bending moment at failure test result was 6 percent more than the normalized average A-P bending moment. The normalized average L-M shear force at failure was 23 percent higher than the normalized average A-P shear force. The faster rate of loading resulted in a higher average bending moment overall - 8 percent in the L-M and 14 percent in the A-P loading directions.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model

1999-10-10
99SC22
Relative motion between the brain and skull may explain many types of brain injury such as intracerebral hematomas due to bridging veins rupture [1] and cerebral contusions. However, no experimental methods have been developed to measure the magnitude of this motion. Consequently, relative motion between the brain and skull predicted by analytical tools has never been validated. In this study, radio opaque markers were placed in the skull and neutral density markers were placed in the brain in two vertical columns in the occipitoparietal and temporoparietal regions. A bi-planar, high-speed x-ray system was used to track the motion of these markers. Due to limitations in current technology to record the x-ray image on high-speed video cameras, only low- speed (﹤ 4m/s) impact data were available.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

Foot and Ankle Finite Element Modeling Using Ct-Scan Data

1999-10-10
99SC11
Although not life threatening in most cases, victims of lower extremity injuries frequently end up living with a poor quality of life. The implementations of airbag supplement restraint systems significantly reduce the incidence of head and chest injuries. However, the frequency of leg injuries remains high. Several finite element models of the foot and ankle have been developed to further the understanding of this injury mechanism. None of those models employed accurate geometry among various bony segments. The objective of this study is to develop a foot and ankle finite element model based on CT scan data so that joint geometry can be accurately represented. The model was validated against experimental data for several different configurations including typical car crash situations.
Technical Paper

A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates

2006-11-06
2006-22-0023
Traumatic brain injury (TBI) continues to be a major health problem, with over 500,000 cases per year with a societal cost of approximately $85 billion in the US. Motor vehicle accidents are the leading cause of such injuries. In many cases of TBI widespread disruption of the axons occurs through a process known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI). In the current study, an in vivo TAI model was developed using spinal nerve roots of adult rats. This model was used to determine functional and structural responses of axons to various strains and displacement rates. Fifty-six L5 dorsal nerve roots were each subjected to a predetermined strain range (<10%, 10-20% and >20%) at a specified displacement rate (0.01 mm/sec and 15 mm/sec) only once. Image analysis was used to determine actual strains on the roots during the pull.
Technical Paper

Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat

2006-11-06
2006-22-0022
Complete validation of any finite element (FE) model of the human brain is very difficult due to the lack of adequate experimental data. However, more animal brain injury data, especially rat data, obtained under well-defined mechanical loading conditions, are available to advance the understanding of the mechanisms of traumatic brain injury. Unfortunately, internal response of the brain in these experimental studies could not be measured. The aim of this study was to develop a detailed FE model of the rat brain for the prediction of intracranial responses due to different impact scenarios. Model results were used to elucidate possible brain injury mechanisms. An FE model, consisting of more than 250,000 hexahedral elements with a typical element size of 100 to 300 microns, was developed to represent the brain of a rat. The model was first validated locally against peak brain deformation data obtained from nine unique dynamic cortical deformation (vacuum) tests.
Technical Paper

Evaluation of Injury Criteria for the Prediction of Commotio Cordis from Lacrosse Ball Impacts

2011-11-07
2011-22-0010
Commotio Cordis (CC) is the second leading cause of mortality in youth sports. Impacts occurring directly over the left ventricle (LV) during a vulnerable period of the cardiac cycle can cause ventricular fibrillation (VF), which results in CC. In order to better understand the pathophysiology of CC, and develop a mechanical model for CC, appropriate injury criteria need to be developed. This effort consisted of impacts to seventeen juvenile porcine specimens (mass 21-45 kg). Impacts were delivered over the cardiac silhouette during the venerable period of the cardiac cycle. Four impact speeds were used: 13.4, 17.9, 22.4, and 26.8 m/s. The impactor was a lacrosse ball on an aluminum shaft instrumented with an accelerometer (mass 188 g - 215 g). The impacts were recorded using high-speed video. LV pressure was measured with a catheter. Univariate binary logistic regression analyses were performed to evaluate the predictive ability of ten injury criteria.
Technical Paper

Injury Predictors for Traumatic Axonal Injury in a Rodent Head Impact Acceleration Model

2011-11-07
2011-22-0002
A modified Marmarou impact acceleration injury model was developed to study the kinematics of the rat head to quantify traumatic axonal injury (TAI) in the corpus callosum (CC) and brainstem pyramidal tract (Py), to determine injury predictors and to establish injury thresholds for severe TAI. Thirty-one anesthetized male Sprague-Dawley rats (392 ± 13 grams) were impacted using a modified impact acceleration injury device from 2.25 m and 1.25 m heights. Beta-amyloid precursor protein (β-APP) immunocytochemistry was used to assess and quantify axonal changes in CC and Py. Over 600 injury maps in CC and Py were constructed in the 31 impacted rats. TAI distribution along the rostro-caudal direction in CC and Py was determined. Linear and angular responses of the rat head were monitored and measured in vivo with an attached accelerometer and angular rate sensor, and were correlated to TAI data.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Technical Paper

Abdominal Injury and Response in Side Impact

1996-11-01
962410
The purpose of this paper is to address abdominal injury and response in cadaver whole body side impacts and abdominal injury risk functions in SID and BIOSID in whole body impacts. Side impact sled tests were performed at Wayne State University using cadavers, SID and BIOSID, with response measured at the shoulder, thorax, abdominal and pelvic levels. The data at the abdominal level are presented here. These data provide further understanding of abdominal tolerance and response in lateral impact and the ability of side impact dummies to predict abdominal injury. In addition, the padding data provide insight into tolerable armrest loads.
Technical Paper

Upper Extremity Injuries Related to Air Bag Deployments

1994-03-01
940716
From our crash investigations of air bag equipped passenger cars, a subset of upper extremity injuries are presented that are related to air bag deployments. Minor hand, wrist or forearm injuries-contusions, abrasions, and sprains are not uncommonly reported. Infrequently, hand fractures have been sustained and, in isolated cases, fractures of the forearm bones or of the thumb and/or adjacent hand. The close proximity of the forearm or hand to the air bag module door is related to most of the fractures identified. Steering wheel air bag deployments can fling the hand-forearm into the instrument panel, rearview mirror or windshield as indicated by contact scuffs or tissue debris or the star burst (spider web) pattern of windshield breakage in front of the steering wheel.
X