Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

2009-04-20
2009-01-1309
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model incorporated fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). Based on PSAT simulations of the blended charge depleting (CD) operation, grid electricity accounted for a share of the vehicle’s total energy use ranging from 6% for PHEV 10 to 24% for PHEV 40 based on CD vehicle mile traveled (VMT) shares of 23% and 63%, respectively. Besides fuel economy of PHEVs and type of on-board fuel, the type of electricity generation mix impacted the WTW results of PHEVs, especially GHG emissions.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems

2010-04-12
2010-01-0032
This study outlines an approach for speeding up the simulation of the dynamic response of vehicle models that include hysteretic nonlinear tire components. The method proposed replaces the hysteretic nonlinear tire model with a surrogate model that emulates the dynamic response of the actual tire. The approach is demonstrated via a dynamic simulation of a quarter vehicle model. In the proposed methodology, training information generated with a reduced number of harmonic excitations is used to construct the tire hysteretic force emulator using a Neural Network (NN) element. The proposed approach has two stages: a learning stage, followed by an embedding of the learned model into the quarter car model. The learning related main challenge stems from the attempt to capture with the NN element the behavior of a hysteretic element whose response depends on its loading history.
Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

Analysis of Cyclic Variability and the Effect of Dilute Combustion in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1238
The pressing need to improve U.S. energy independence and reduce climate forcing fossil fuel emissions continues to motivate the development of high-efficiency internal combustion engines. A recent trend has been to downsize and turbocharge automotive spark-ignited engines coupled with direct fuel injection to improve engine efficiency while maintaining vehicle performance. In-line with recent trends in state-of-the-art engine technology, the focus of this study is lean and EGR dilute combustion in a gasoline direct injection (GDI) engine. The lean and dilute operating limits are defined by combustion stability typically in terms of COVIMEP so experiments were carried out on an automotive size single-cylinder research engine to characterize combustion stability. From a 20,000 cycle sequence analysis, lean operating conditions exhibit binary high- to low-IMEP cycle sequences. This may be because the cycle-to-cycle feedback mechanisms are physically limited to one or two cycles.
Journal Article

Impact of Cetane Number on Combustion of a Gasoline-Diesel Dual-Fuel Heavy-Duty Multi-Cylinder Engine

2014-04-01
2014-01-1309
Dual-fuel combustion using liquid fuels with differing reactivity has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low soot and NOx emissions, and high indicated efficiency. Varying fractions of gasoline-type and diesel-type fuels enable operation across a range of low- and mid-load operating conditions. Expanding the operating range to cover the full operating range of a heavy-duty diesel engine, while maintaining the efficiency and emissions benefits, is a key objective. With dissimilar properties of the two utilized fuels lying at the heart of the dual-fuel concept, a tool for enabling this load range expansion is altering the properties of the two test fuels - this study focuses on altering the reactivity of the diesel fuel component. Tests were conducted on a 13L six-cylinder heavy-duty diesel engine modified to run dual-fuel combustion with port gasoline injection to supplement the direct diesel injection.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Journal Article

Control Analysis and Thermal Model Development for Plug-In Hybrid Electric Vehicles

2015-04-14
2015-01-1157
For electrified vehicles, understanding the impact of temperature on vehicle control and performances becomes more important than before because the vehicle might consume more energy than conventional vehicles due to lack of the engine waste heat. Argonne has tested many advanced vehicles and analyzed the vehicle level control based on the test data. As part of its ongoing effort, Toyota Prius Plug-in Hybrid was tested in thermal environmental chamber, and the vehicle level control and performances are analyzed by observing the test results. The analysis results show that the control of the Plug-in Hybrid Electric Vehicle (PHEV) is similar with Prius Hybrid Electric Vehicle (HEV) when the vehicle is under a charge sustaining mode, and the vehicle tries to consume the electric energy first under a charge depleting mode.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Journal Article

Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

2016-10-17
2016-01-2364
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Journal Article

Cylinder-to-Cylinder Variations in Power Production in a Dual Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

2016-04-05
2016-01-0776
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
Journal Article

Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

2016-10-17
2016-01-2293
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas.
Journal Article

Comparison of Powertrain Configuration for Plug-in HEVs from a Fuel Economy Perspective

2008-04-14
2008-01-0461
With the success of hybrid electric vehicles (HEVs) and the still uncertain long-term solution for vehicle transportation, Plug-in Hybrid Electric Vehicles (PHEV) appear to be a viable short-term solution and are of increasing interest to car manufacturers. Like HEVs, PHEVs offer two power sources that are able to independently propel the vehicle. They also offer additional electrical energy onboard. In addition to choices about the size of components for PHEVs, choices about powertrain configuration must be made. In this paper, we consider three potential architectures for PHEVs for 10- and 40-mi All Electric Range (AER) and define the components and their respective sizes to meet the same set of performance requirements. The vehicle and component efficiencies in electric-only and charge-sustaining modes will be assessed.
Journal Article

An Expeditious High Fidelity ABAQUS-Based Surrogate Tire Model for Full Vehicle Durability Analysis in ADAMS

2011-04-12
2011-01-0187
This paper discusses an approach to construct a high fidelity surrogate tire model using a two-phase optimization-based algorithm that draws on data generated by off-line nonlinear ABAQUS tire simulations. It subsequently describes the process of Simulink-based interfacing of the resulting surrogate model to a full ADAMS vehicle model to enable accurate and expeditious durability studies. The two-phase surrogate model construction relies on an identification method that draws on the Instantaneous Center Manifold (ICM) theory. In the proposed method, a generally forced non-autonomous nonlinear structural system is represented as a sequence of harmonically excited autonomous nonlinear systems. The close-form solution of each of these systems is produced using the ICM theory. The first phase of the surrogate model construction uses an optimal Orthogonal Matching Pursuit (OMP) algorithm to unify all ICMs used to approximate the reaction force of the tire at its spindle.
Journal Article

Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles

2011-09-11
2011-24-0096
This paper describes the validation of a CFD code for mixture preparation in a direct injection hydrogen-fueled engine. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located injector. A single-hole and a 13-hole nozzle are used at about 100 bar and 25 bar injection pressure. Numerical results from the commercial code Fluent (v6.3.35) are compared to measurements in an optically accessible engine. Quantitative planar laser-induced fluorescence provides phase-locked images of the fuel mole-fraction, while single-cycle visualization of the early jet penetration is achieved by a high-speed schlieren technique. The characteristics of the computational grids are discussed, especially for the near-nozzle region, where the jets are under-expanded. Simulation of injection from the single-hole nozzle yields good agreement between numerical and optical results in terms of jet penetration and overall evolution.
Journal Article

Reliability Prediction for the HMMWV Suspension System

2011-04-12
2011-01-0726
This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability prediction framework. The integrated stochastic framework combines the computational physics-based predictions with experimental testing information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics models and high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was implemented.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
X