Refine Your Search

Topic

Search Results

Journal Article

Numerical Study of the Effect of Piston Shapes and Fuel Injection Strategies on In-Cylinder Conditions in a PFI/GDI Gasoline Engine

2014-10-13
2014-01-2670
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to stabilize the hybrid combustion process, the port fuel injection (PFI) combined with gasoline direct injection (GDI) strategy is proposed in this study to form the in-cylinder fuel stratification to enhance the early flame propagation process and control the auto-ignition combustion process. The effect of bowl piston shapes and fuel injection strategies on the fuel stratification characteristics is investigated in detail using three-dimensional computational fluid dynamics (3-D CFD) simulations. Three bowl piston shapes with different bowl diameters and depths were designed and analyzed as well as the original flat piston in a single cylinder PFI/GDI gasoline engine.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Analysis of the Boost System for a High Performance 2-Stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2020-09-15
2020-01-2007
A 2-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine was researched and developed at Brunel University London to achieve higher power-to-mass ratio and thermal efficiency. In the BUSDIG engine concept, the intake scavenge ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head. Systematic studies on scavenging ports, intake plenum, piston design, valve opening profiles and fuel injection strategies have been performed to investigate and optimise the scavenging performance and in-cylinder fuel/air mixing process for optimised combustion process. In order to achieve superior power performance with higher thermal efficiency, the evaluation and optimisation of the boost system for a 1.0 L 2-cylinder 2-stroke BUSDIG engine were performed in this study using one dimensional (1D) engine simulations.
Journal Article

Investigation of Early and Late Intake Valve Closure Strategies for Load Control in a Spark Ignition Ethanol Engine

2017-03-28
2017-01-0643
The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Journal Article

Effects of Injection Timing on CAI Operation in a 2/4-Stroke Switchable GDI Engine

2011-08-30
2011-01-1773
A single cylinder direct injection gasoline engine has been developed and commissioned on a transient engine test bed in order to study different engine cycles and combustion modes with identical hardware and operating conditions. The engine can be operated in either 4-stroke cycle or 2-stroke cycle by means of an electro-hydraulic camless system. In addition, both spark ignition and controlled autoignition (CAI) combustion can be achieved. In this paper, effects of the injection timing on different CAI combustion modes are investigated, including the residual gas trapping and exhaust gas rebreathing CAI operations in 4-stroke mode, and also 2-stroke CAI operation, with a stoichiometric air fuel ratio and homogeneous charge used throughout. The performance and emission data are presented and analysed as a function of the injection timing. Results show that the charge cooling effect on the intake flow rate is dependent upon the in-cylinder temperature at the time of injection.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
Technical Paper

Study of SI-HCCI-SI Transition on a Port Fuel Injection Engine Equipped with 4VVAS

2007-04-16
2007-01-0199
A strategy to actualize the dual-mode (SI mode and HCCI mode) operation of gasoline engine was investigated. The 4VVAS (4 variable valve actuating system), capable of independently controlling the intake and exhaust valve lifts and timings, was incorporated into a specially designed cylinder head for a single cylinder research engine and a 4VVAS-HCCI gasoline engine test bench was established. The experimental research was carried out to study the dynamic control strategies for transitions between HCCI and SI modes on the HCCI operating boundaries. Results show that equipped with the 4VVAS cylinder head, the engine can be operated in HCCI or SI mode to meet the demands of different operating conditions. 4VVAS enables the rapid and effective control over the in-cylinder residual gas, and therefore dynamic transitions between HCCI and SI can be stably achieved. It is easier to achieve transition from HCCI to SI than reversely due to the influence of thermo-inertia.
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
Technical Paper

In-cylinder Studies of Fuel Injection and Combustion from a Narrow Cone Fuel Injector in a High Speed Single Cylinder Optical Engine

2008-06-23
2008-01-1789
Over the last decade, the high speed direct injection (HSDI) diesel engine has made dramatic progress in both its performance and market share in the light duty vehicle market. However, with ever more stringent emission legislation to be introduced over coming years, the simultaneous reduction of NOx and Particulate Matter (PM) from the HSDI diesel engine is being intensively researched. As part of a European Union (EU) NICE integrated project, research has been carried out to investigate the fuel injection and combustion from a narrow cone fuel injector in a high speed direct injection single cylinder engine with optical access utilising a multiple injection strategy and various alternate fuels. The fuel injection process was visualised using a high speed imaging system comprising a copper vapour laser and a high speed video camera. The auto-ignition and combustion process was analysed through the chemiluminescence images of CHO and OH using an intensified CCD camera.
Technical Paper

In-Cylinder Studies of CAI Combustion with Negative Valve Overlap and Simultaneous Chemiluminescence Analysis

2009-04-20
2009-01-1103
The negative valve overlap has been shown as one of the most effective means to achieve controlled autoignition combustion in a four-stroke gasoline engine. A number of researches have been carried out on the performance and emission characteristics of CAI engines but there are still some fundamental questions that are yet to be addressed such as in-cylinder process. In the present study, a Ricardo Hydra single cylinder, four stroke optical gasoline engine was instrumented to investigate CAI combustion through negative valve overlap configuration. The effects of direct fuel injection timings and direct air injection at lambda 1 were studied by means of simultaneous in-cylinder heat release study and high speed images of complete chemiluminescence emission, OH and CHO radicals. In particular, the minor combustion process during the NVO period with various air injection quantities was studied with both heat release analysis and chemiluminescence results.
Technical Paper

Analysis of a Cost Effective Air Hybrid Concept

2009-04-20
2009-01-1111
The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to give additional power can therefore improve fuel economy, particularly in cities and urban areas where the traffic conditions involve many stops and starts. In order to reuse the residual kinetic energy, the vehicle operation consists of 3 basic modes, i.e. Compression Mode (CM), Expander Mode (EM) and normal firing mode. Unlike previous works, a low cost air hybrid engine has been proposed and studied. The hybrid engine operation can be realised by means of production technologies, such as VVT and valve deactivation. In this work, systematic investigation has been carried out on the performance of the hybrid engine concept through detailed gas dynamic modelling using Ricardo WAVE software.
Technical Paper

Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine

2001-09-24
2001-01-3608
Controlled Auto-Ignition (CAI) combustion has been achieved in a production type 4-stroke multi-cylinder gasoline engine. The engine was based on a Ford 1.7L Zetec-SE 16V engine with a compression ratio of 10.3, using substantially standard components modified only in design dimensions to control the gas exchange process in order to significantly increase the trapped residuals. The engine was also equipped with Variable Cam Timing (VCT) on both the intake and exhaust camshafts. It was found that the largely increased trapped residuals alone were sufficient to achieve CAI in this engine and with VCT, a range of loads between 0.5 and 4 bar BMEP and engine speeds between 1000 and 3500 rpm were mapped for CAI fuel consumption and exhaust emissions. The measured CAI results were compared with those of Spark Ignition (SI) combustion in the same engine but with standard camshafts at the same speeds and loads.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Impact of Port Fuel Injection and In-Cylinder Fuel Injection Strategies on Gasoline Engine Emissions and Fuel Economy

2016-10-17
2016-01-2174
As the emission regulations for internal combustion engines are becoming increasingly stringent, different solutions have been researched and developed, such as dual injection systems (combined port and direct fuel injection), split injection strategies (single and multiple direct fuel injection) and different intake air devices to generate an intense in-cylinder air motion. The aim of these systems is to improve the in-cylinder mixture preparation (in terms of homogeneity and temperature) and therefore enhance the combustion, which ultimately increases thermal efficiency and fuel economy while lowering the emissions. This paper describes the effects of dual injection systems on combustion, efficiency and emissions of a downsized single cylinder gasoline direct injection spark ignited (DISI) engine. A set of experiments has been conducted with combined port fuel and late direct fuel injection strategy in order to improve the combustion process.
Technical Paper

Engine Downsizing through Two-Stroke Operation in a Four-Valve GDI Engine

2016-04-05
2016-01-0674
With the introduction of CO2 emissions legislation in Europe and many countries, there has been extensive research on developing high efficiency gasoline engines by means of the downsizing technology. Under this approach the engine operation is shifted towards higher load regions where pumping and friction losses have a reduced effect, so improved efficiency is achieved with smaller displacement engines. However, to ensure the same full load performance of larger engines the charge density needs to be increased, which raises concerns about abnormal combustion and excessive in-cylinder pressure. In order to overcome these drawbacks a four-valve direct injection gasoline engine was modified to operate in the two-stroke cycle. Hence, the same torque achieved in an equivalent four-stroke engine could be obtained with one half of the mean effective pressure.
Technical Paper

Expanding the Low Load Limit of HCCI Combustion Process Using EIVO Strategy in a 4VVAS Gasoline Engine

2012-04-16
2012-01-1121
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption in gasoline engine. However, it is still confronted with the problem of its limited operation range. High load is limited by the tradeoff between the quantity of working charge and dilution charge. Low load is limited by the high residual gas fraction and low temperature in the cylinder. One of the highlights of HCCI combustion research at present is to expand the low load limit of HCCI combustion by developing HCCI idle operation. The main obstacle in developing HCCI idle combustion is too high residual gas fraction and low temperature to misfire in cylinder. This paper relates to a method for achieving the appropriate environment for auto-ignition at idle and the optimal tradeoff between the combustion stability and fuel consumption by employing EIVO valve strategy with an equivalent air-fuel ratio.
Technical Paper

Effects of Active Species in Residual Gas on Auto-Ignition in a HCCI Gasoline Engine

2012-04-16
2012-01-1115
Chemical reaction kinetics plays an important role in homogeneous charge compression ignition (HCCI) combustion. In order to control the combustion process, the underlying mechanism of auto-ignition must be explored, especially for the HCCI combustion using negative valve overlap (NVO) strategy, in which the residual gas affects the auto-ignition of next cycle remarkably. In this research, experimental research was carried out in a single cylinder gasoline engine equipped with an in-cylinder sampling system which mainly consists of a special spark plug, a sampling tube and a high-speed electromagnetic valve. In-cylinder charge was sampled at compression stroke and analyzed by FTIR with two types of fuel injection strategy, such as port fuel injection (PFI) solely and port fuel injection combined with injection during negative valve overlap (PFI & NVO-Injection).
Technical Paper

Wall Temperature Effect on SI-CAI Hybrid Combustion Progress in a Gasoline Engine

2013-04-08
2013-01-1662
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to investigate the effect of the thermal boundary condition on the hybrid combustion, the experiments with different coolant temperatures are performed to adjust the chamber wall temperature in a gasoline engine. The experimental results indicate that increasing wall temperature would advance the combustion phasing, enlarge the peak heat release rate and shorten the combustion duration. While the capacity of the wall temperature effect on the hybrid combustion characteristics are more notable in the auto-ignition dominated hybrid combustion.
X