Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Experimental Characterization of Wet Clutch Friction Behaviors Including Thermal Dynamics

2009-04-20
2009-01-1360
Wet clutches are widely used in automotive systems. They are essential parts of automatic transmissions, modern All-Wheel-Drive systems or dual-clutch transmissions. Regardless of the area of application, a good knowledge of clutch friction behaviors is crucial for the clutch control system development. This paper considers two important factors of the wet clutch dynamics: coefficient of friction behavior and thermal dynamics. An Active Limited Slip Differential wet clutch with carbon fiber-based friction lining material is experimentally characterized by using a precise wet clutch setup. The characterization of the coefficient of friction behavior includes influence of clutch slip speed, applied force, and friction surface temperature. The clutch thermal dynamics is characterized based on the heat power balance law applied to the clutch separator plate with a variable heat transfer coefficient. The results of the thermal model experimental validation are presented, as well.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part I: Experimental Results

2009-05-19
2009-01-2063
The objective of this investigation is to characterize the ability of loose gears to resist rattle in a manual transmission driven by an internal combustion engine. A hemi-anechoic transmission dynamometer test cell with the capability to produce torsional oscillations is utilized to initiate gear rattle in a front wheel drive (FWD) manual transmission, for a matrix of operating loads and selected gear states. A signal processing technique is derived herein to identify onset of gear rattle resulting from a standardized set of measurements. Gear rattle was identified by a distinct change in noise and vibration measures, and correlated to gear oscillations by a computed quantity referred to as percent deviation in normalized gear speed. An angular acceleration rattle threshold is defined based upon loose gear inertia and drag torque. The effects of mean speed, mean and dynamic torque, and gear state on the occurrence of loose gear rattle are reported.
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program: Part 1 – Project Overview and PEMS Evaluation Procedures

2009-04-20
2009-01-0940
Under the U.S. Environmental Protection Agency's (EPA's) Heavy-Duty In-Use Testing (HDIUT) program, emission of non-methane hydrocarbons (NMHC), carbon monoxide (CO), and oxides of nitrogen (NOx) have been regulated using Portable Emissions Measurement Systems (PEMS) during in-use field operation for heavy-duty on-highway diesel engines with 2007 or later model year designations. As directed by the EPA, the Engine Manufacturers Association (EMA), and the California Air Resources Board (CARB), additive emission measurement accuracy margins (measurement allowances) were experimentally determined for HDIUT to account for the measurement differences between laboratory testing with laboratory grade equipment and in-use testing with PEMS. As part of a three-paper series, this paper summarizes the HDIUT measurement allowance program while focusing on the laboratory evaluations of the Sensors Inc. SEMTECH-DS PEMS.
Journal Article

Fuel Economy Benefits of a Flywheel & CVT Based Mechanical Hybrid for City Bus and Commercial Vehicle Applications

2009-10-06
2009-01-2868
Hybrid drivetrain systems are becoming increasingly prevalent in Automotive and Commercial Vehicle applications and have also been introduced for the 2009 Formula1 motorsport season. The F1 development has the clear intent of directing technical development in motorsport to impact the key issue of fuel efficiency in mainstream vehicles. In order to promote all technical developments, the type of system (electrical, mechanical, hydraulic, etc) for the F1 application has not been specified. A significant outcome of this action is renewed interest and development of mechanical hybrid systems comprising a high speed composite flywheel and a full-toroidal traction drive Continuously Variable Transmission (CVT). A flywheel based mechanical hybrid has few system components, low system costs, low weight and dispenses with the energy state changes of electrical systems producing a highly efficient and power dense hybrid system.
Journal Article

Recent Advances Towards an Integrated and Optimized Design of High Lift Actuation Systems

2009-11-10
2009-01-3217
For actuation of high lift surfaces in modern airplanes, complex mechanical shaft transmission systems powered by central drive units are deployed. The design of mechanical actuation systems, which have a major share in the weight of secondary flight controls, is a complex and challenging engineering task. Especially for specification of essential component and system design parameters within the preliminary design phase, engineering skill and experience are of significant importance owing to many uncertainties in component data and boundary conditions. Extensive trade-offs, as well as an evaluation of the system requirements and constraints lead to an iterative and time-consuming design process. Utilizing an integrated design assistance tool, mathematical functions and constraints can be modeled on system and component level and formalized as a constraint satisfaction problem (CSP). Thus, automated consistency checking and pruning of the solution space can be achieved.
Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Journal Article

Experimental Procedure for Measuring the Energy Consumption of IC Engine Lubricating Pumps during a NEDC Driving Cycle

2009-06-15
2009-01-1919
The paper presents an experimental procedure for comparing different families of IC Engine lubricating pumps in terms of total consumed energy in a NEDC driving cycle. Measures are performed on a test rig able to reproduce the oil temperature profile, the lubrication circuit permeability and its variation during the engine warm-up. The pump under test is driven by a variable speed electric motor supplying the engine velocity profile of the driving cycle. The load on the pump is generated by means of a variable restrictor controlled in a closed loop by a proper combination of speed, temperature, flow rate and pressure signals in order to replicate the typical permeability of the lubricating circuit.
Journal Article

Drivability Analysis of Heavy Goods Vehicles

2010-10-05
2010-01-1981
The paper presents linear and non-linear driveline models for Heavy Goods Vehicles (HGVs) in order to evaluate the main parameters for optimal tuning, when considering the drivability. The implemented models consider the linear and non-linear driveline dynamics, including the effect of the engine inertia, the clutch damper, the driveshaft, the half-shafts and the tires. Sensitivity analyses are carried out for each driveline component during tip-in maneuvers. The paper also analyses the overall frequency response using Bode diagrams and natural frequencies. It is demonstrated that the most basic model capable of taking into account the first order dynamics of the driveline must consider the moments of inertia of the engine, the transmission and the wheels, the stiffness and the damping properties of the clutch damper, driveshaft and half-shafts, and the tires (which link the wheel to the equivalent inertia of the vehicle).
Journal Article

The Lotus Range Extender Engine

2010-10-25
2010-01-2208
The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.
Journal Article

Permeability Measurements of Sintered and Paper Based Friction Materials for Wet Clutches and Brakes

2010-10-25
2010-01-2229
Wet clutches are important components used in the transmission and drive trains of many modern vehicles. The clutches transfer torque via the friction between a number of friction discs and the friction characteristics is therefore of great importance for the overall behavior of the vehicles. The friction characteristics is governed by a number of parameters such as lubricant base oil and additives, type and permeability of the friction material and temperature and surface roughness of the interacting surfaces. The permeability is considered to influence time of engagement and supply the sliding interface with lubricant and additives during engagement. In this work, a permeability measurement method suitable for wet clutch friction materials is thus used to measure the permeability of friction materials of different types; sintered bronze and paper based materials.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Deposit Formation in Urea-SCR Systems

2009-11-02
2009-01-2780
Formation of urea injection related deposits in a heavy-duty urea-SCR system was studied using an engine lab setup. The exhaust system was instrumented with thermocouples to track temperature changes caused by the liquid spray. Impact of operating parameters (exhaust and ambient temperature, urea solution injection rate) and system design modification (insulation, wiremesh insert) on the temperature profiles and deposit quantities was studied. Deposits were found in all tests conducted under typical exhaust temperatures. Deposition rate increased with lower exhaust and ambient temperature, and with higher injection rate. Mixer insulation and wiremesh upstream of the mixer reduced the deposits.
Journal Article

Message Packing Algorithm for CAN-Based Legacy Control Systems Mixed with CAN and FlexRay

2010-04-12
2010-01-0685
Hard real-time systems such as automotive control systems have to guarantee that strict deadlines are met for applications. Recent automotive control systems have been network systems that have combined event-triggered with time-triggered networks, i.e., Controller Area Network (CAN) and FlexRay. A CAN-FlexRay gateway has to execute real-time message transfers from CAN to FlexRay and from FlexRay to CAN to guarantee that communication deadlines are met. Most gateways in the automotive control systems select messages according to the priority of the messages and pack them into frames. However, when many events of same kinds occur within the short period, the gateway cannot guarantee that communication deadlines for time-triggered and first event-triggered messages will be met because many event-triggered messages prevent time-triggered messages from being packed into frame.
X