Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

IAV's Steam Engine A Unique Approach to Fulfill Emission Levels from SULEV to ZEV

2001-03-05
2001-01-0366
Fulfillment of SULEV standards without catalyst - this is a target engineers at IAV have been working on since the middle of the 1990s. The core of this development is an advanced steam engine with a high performance burner. This burner features extremely low raw pollutant emission. This paper describes new solutions that were found to solve the challenging tasks in the development of such an engine concept.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures

2001-03-05
2001-01-0333
Engineers use phenomenological simulation models to determine engine performance. Using these models, we can predict with reasonable accuracy the heat release rate mechanism inside the engine cylinder, which enables us to obtain a prediction of the pressure history inside the engine cylinder. Using this value and the volume change rate of the combustion chamber, we can then estimate the indicated power output of the engine. However, in order to obtain the brake engine power output we must have an indication for the mechanical losses, a great part of which are friction losses. Up to now various correlations have been proposed that provide the frictional mean effective pressure as a function mainly of engine speed and load. These correlations have been obtained from the processing of experimental data, i.e. experimental values for the indicated and brake power output of engines.
Technical Paper

NOx Adsorber Desulfurization Under Conditions Compatible With Diesel Applications

2001-03-05
2001-01-0508
One of the main drawbacks of the NOx adsorber technology vs. the other leading approach for high level NOx conversion, namely selective catalytic reduction, is its high sensitivity to sulfur. In spite of the likely availability of ultra-low sulfur fuel and protecting devices like sulfur traps, and furthermore taking into consideration additional sulfur sources such as engine oil and lubricants, a desulfurization strategy will be essential to the commercial implementation of NOx adsorber catalysts on diesel vehicles. The results presented in this paper were obtained on NOx adsorbers with proven thermal durability and efficiency in diesel engine exhaust. They show NOx performance recovery following severe sulfur poisoning, after desulfation under temperature and air/fuel mixture conditions compatible with diesel engine operation. In addition, different desulfurization tactics, tested on a synthetic gas bench simulating diesel exhaust, are depicted and discussed.
Technical Paper

Combined Silencers and Urea-SCR Systems for Heavy-Duty Diesel Vehicles for OEM and Retrofit Markets

2001-03-05
2001-01-0517
Selective Catalytic Reduction (SCR) with NH3 or urea is one of the most effective methods for removal of NOx in exhaust from HD diesel engines with potential for achieving more than 90% NOx-reduction measured in the European transient or a US HD FTP test cycle. The present paper describes the following two systems; One OEM UREA-SCR SILENCER, comprising a silencer with built-in catalyst. The system was tested on a Scania DC1205 320 kW diesel engine, which was calibrated for the Euro II emission standard. The test results showed that it is possible to reduce more than 85% of the NOx emission with an insignificant NH3 slip in the ETC transient test cycle. The pressure-drop of the system was measured at 80% of that of the engine's original silencer and the silencing performance was improved for low frequencies below 125 Hz. One RETROFIT UREA-SCR SYSTEM for HD engines, comprising a silencer with built-in catalyst, an electronic urea injection control system, urea injection and a urea tank.
Technical Paper

Dynamometer Testing of a Heavy Duty Diesel Engine Equipped with a Urea-SCR System

2001-03-05
2001-01-0516
As part of a California Selective Catalyst Reduction (SCR) system demonstration and evaluation project [13], the authors and their industrial partners have conducted engine dynamometer emissions tests of SCR systems. The transient Federal Test Procedure (FTP) cycle and 13 Mode European Stationary Cycle (ESC) were conducted using certification diesel fuel with 300-500 ppm of sulfur. This paper reviews the performance of the first system to meet the goal of attaining 1 g/bhp-hr NOx emissions in the transient FTP cycle on a 1999 DDC Series 60 engine that has an initial 4 g/bhp-hr level. This paper discusses key characteristics of a typical automotive SCR system and then presents the results and analysis of the engine dynamometer emission testing of a SCR system. The paper concludes with a discussion of the challenges involved in on-road operation of the system.
Technical Paper

Bench-Scale Demonstration of an Integrated deSoot-deNOx System

2001-03-05
2001-01-0515
A catalytic deSoot-deNOx system, comprising Pt and Ce fuel additives, a Pt impregnated wall-flow monolith soot filter and a vanadia-type monolithic NH3 - SCR catalyst, was tested with a 2 cylinder DI diesel engine. The soot removal efficiency of the filter was 98-99% (mass), the balance temperature (stationary pressure drop) was 315 °C at an engine load of 55%. The NOx-emission at high loads is around 15% lower than those of engine running without fuel additives. The NOx conversion ranged from 40 to 73%, at a NH3/NOx ratio of 0.9, both measured at a GHSV of 52,000 l/l/h. The maximum NOx conversion was obtained at 400 °C. No deactivation was observed after 380 h time on stream.
Technical Paper

Advanced Urea SCR Catalysts for Automotive Applications

2001-03-05
2001-01-0514
The LEV II and EURO V legislation in 2007/2008 require a high conversion level for nitrogen oxides to meet the emission levels for diesel SUVs and trucks. Therefore, U.S. and European truck manufacturers are considering the introduction of urea SCR systems no later than model year 2005. The current SCR catalysts are based mainly on systems derived from stationary power plant applications. Therefore, improved washcoat based monolith catalysts were developed using standard types of formulations. These catalysts achieved high conversion levels similar to extruded systems in passenger car and truck test cycles. However, to meet further tightening of standards, a new class of catalysts was developed. These advanced type of catalytic coatings proved to be equivalent or even better than standard washcoat formulations. Results will be shown from ESC, MVEG and US-FTP 75 tests to illustrate the progress in catalyst design for urea SCR.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Performance and Durability Evaluation of Continuously Regenerating Particulate Filters on Diesel Powered Urban Buses at NY City Transit

2001-03-05
2001-01-0511
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled “Clean Diesel Demonstration Program” has been initiated by NY City Transit under the supervision of NY State DEC and with active participation from several industrial partners. Under this program, several NY City transit buses with DDC Series 50 engines have been equipped with continuously regenerating diesel particulate filter system and are operating with ultra low sulfur diesel (< 30 ppm S) in transit service in Manhattan since February 2000. These buses are being evaluated over a 8-9 month period for operations, maintainability and durability of the particulate filter.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Piston Ring Pack and Cylinder Wear Modelling

2001-03-05
2001-01-0572
Wear of piston ring and cylinder was modelled through a computer code that calculates the hydrodynamic and roughness contact pressures acting on the contact surfaces. Both pressures are fully and coupled solved through, respectively, Reynolds equation and Greenwood-Williamson model. Piston secondary motion and piston groove thermal deformations are considered. The latter was discovered to be fundamental in defining the top ring worn profile. Due to the rough contact pressures, the model predicts material removal from both piston ring and cylinder surfaces and recalculates the system, hence simulating the evolution of the worn sliding surface of both parts. The predicted wear of the piston ring pack and the cylinder wall are compared with a medium duty diesel engine tested for 750 hours in dynamometer.
Technical Paper

A Method to Reduce the Calculation Time for an Internal Combustion Engine Model

2001-03-05
2001-01-0574
Coming along with the present movement towards the ultimately variable engine, the need for clear and simple models for complex engine systems is rapidly increasing. In this context Common-Rail-Systems cause a special kind of problem due to of the high amount of parameters which cannot be taken into consideration with simple map-based models. For this reason models with a higher amount of complexity are necessary to realize a representative behavior of the simulation. The high computational time of the simulation, which is caused by the increased complexity, makes it nearly impossible to implement this type of model in software in closed loop applications or simulations for control purposes. In this paper a method for decreasing the complexity and accelerating the computing time of automotive engine models is being evaluated which uses an optimized method for each stage of the diesel engine process.
Technical Paper

Simulation of the Piston / Cylinder Behavior for Diesel Engines

2001-03-05
2001-01-0563
When developing Diesel engines, some key points will always exist: minimizing noise, reducing internal friction - ultimately fuel consumption - and preventing liner cavitation. To reach economically these targets, the assistance of sophisticated simulation tools is necessary. By means of some selected examples, the simulation procedures and the quality of their results are demonstrated.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

The Emissions Performance of Oxygenated Diesel Fuels in a Prototype DI Diesel Engine

2001-03-05
2001-01-0650
As part of a cooperative development program, six diesel fuels (a reference and five blends containing oxygenates) were evaluated under four steady-state conditions using a prototype 1.26-L 3-cylinder four-valve common-rail DI diesel engine. All of the fuels contained low sulfur (mostly < 5 ppm by mass), and they were chosen to determine the impacts of oxygenate volatility, concentration, and chemical type (paraffinic or aromatic) on exhaust emissions - with particular emphasis on particulate emissions. In addition to HC, CO, NOx and PM emissions measurements, emissions of the volatile portion of the PM and particle size were determined. Relative to the very low sulfur reference fuel, the oxygenated fuels reduced PM and NOx under some operating conditions, but produced little effect on either HC or CO emissions. Aliphatic oxygenates at 6 wt. percent oxygen in the reference fuel reduced simulated FTP PM emissions by 15 - 27 %.
Technical Paper

Reduction of NOx and Smoke Emissions in a Diesel Engine Fueled by Biodiesel Emulsion Combined with EGR

2001-03-05
2001-01-0649
Transesterified fuels (biodiesel fuels; BDF) from vegetable oils are alternative fuels for diesel engines, they are renewable and offer potential reductions in carbon dioxide emissions. Many studies have reported that exhaust from BDF has equal or higher NOx concentrations while HC and PM emissions are significantly lower than with gas oil. The aim of the present investigation is to achieve drastic reductions in NOx emissions. Performance tests of a single cylinder DI diesel engine were conducted using water emulsified fuels from BDF and gas oil with varying water addition rates combined with cooled EGR. The result showed that at a rated output, the emulsified gas oil with water to base fuel volume ratio of 30% reduced NOx (from 1020ppm) to 190ppm with the 21% EGR condition maintaining the minimum BSEC value achieved with EGR free gas oil operation. However, the smoke density increased by 28%.
Technical Paper

Effects of Oxygenated Fuels on DI Diesel Combustion and Emissions

2001-03-05
2001-01-0648
Experiments to study the effects of oxygenated fuels on emissions and combustion were performed in a single-cylinder direct-injection (DI) diesel engine. A matrix of oxygen containing fuels assessed the impact of weight percent oxygen content, oxygenate chemical structure, and oxygenate volatility on emissions. Several oxygenated chemicals were blended with an ultra-low sulfur diesel fuel and evaluated at an equivalent energy release and combustion phasing. Additional experiments investigated the effectiveness of oxygenated fuels at a different engine load, a matched fuel/air equivalence ratio, and blended with a diesel fuel from the Fischer-Tropsch process. Interactions between emissions and critical engine operating parameters were also quantified. A scanning mobility particle sizer (SMPS) was used to evaluate particle size distributions, in addition to particulate matter (PM) filter and oxides of nitrogen (NOx) measurements.
Technical Paper

Effects of Alternative Fuels and Intake Port Geometry on HSDI Diesel Engine Performance and Emissions

2001-03-05
2001-01-0647
This research explored methods to reduce regulated emissions in a small-bore, direct-injection diesel engine. Swirl was used to influence mixing of the spray plumes, and alternative fuels were used to study the effects of oxygenated and water microemulsion diesel fuels on emissions. Air/fuel mixing enhancement was achieved in the running engine by blocking off a percentage of one of the two intake ports. The swirl was characterized at steady-state conditions with a flowbench and swirl meter. Swirl ratios of 1.85, 2.70, and 3.29 were studied in the engine tests at full load with engine speeds of 1303, 1757, and 1906 rev/min. Increased swirl was shown to have negative effects on emissions due to plume-to-plume interactions. Blends of No. 2 diesel and biodiesel were used to investigate the presence of oxygen in the fuel and its effects on regulated emissions. Pure No. 2 diesel fuel, a 15% and a 30% biodiesel blend (by weight) were used.
X