Refine Your Search

Topic

Search Results

Journal Article

Lifetime Prediction of DC-Link Film Capacitors using a Stochastic Model Combined by Random Variable and Gamma Process

2014-04-01
2014-01-0347
In electronic vehicles (EVs) or hybrid electronic vehicles (HEVs), an inverter system has a direct-current-link capacitor (DC-link capacitor) which provides reactive power, attenuates ripple current, reduces the emission of electromagnetic interference, and suppresses voltage spikes. A film capacitor has been used as the DC-link capacitor in high level power system, but the film capacitor's performance has deteriorated over operating time. The decreasing performance of the film capacitor may cause a problem when supplying and delivering energy from the battery to the vehicle's power system. Therefore, the lifetime prediction of the film capacitor could be one of critical factors in the EVs and HEVs. For this reason, the lifetime and reliability of the film capacitor are key factors to show the stability of the vehicle inverter system. There are a lot of methods to predict the lifetime of the film capacitor.
Technical Paper

Real-Time Motion Classification of LiDAR Point Detection for Automated Vehicles

2020-04-14
2020-01-0703
A Light Detection And Ranging (LiDAR) is now becoming an essential sensor for an autonomous vehicle. The LiDAR provides the surrounding environment information of the vehicle in the form of a point cloud. A decision-making system of the autonomous car is able to determine a safe and comfort maneuver by utilizing the detected LiDAR point cloud. The LiDAR points on the cloud are classified as dynamic or static class depending on the movement of the object being detected. If the movement class (dynamic or static) of detected points can be provided by LiDAR, the decision-making system is able to plan the appropriate motion of the autonomous vehicle according to the movement of the object. This paper proposes a real-time process to segment the motion states of LiDAR points. The basic principle of the classification algorithm is to classify the point-wise movement of a target point cloud through the other point clouds and sensor poses.
Technical Paper

Collision Probability Field for Motion Prediction of Surrounding Vehicles Using Sensing Uncertainty

2020-04-14
2020-01-0697
Intelligent driving assistant systems have been studied meticulously for autonomous driving. When the systems have the responsibility for driving itself, such as in an autonomous driving system, it should be aware of its’ surroundings including moving vehicles and must be able to evaluate collision risk for the ego vehicle's planned motion. However, when recognizing surrounding vehicles using a sensor, the measured information has uncertainty because of many reasons, such as noise and resolution. Many previous studies evaluated the collision risk based on the probabilistic theorem which the noise is modeled as a probability density function. However, the previous probabilistic solutions could not assess the collision risk and predict the motion of surrounding vehicles at the same time even though the motion is possible to be changed by the estimated collision risk.
Journal Article

Validation of a Seamless Development Process for Real-time ECUs using OSEK-OS Based SILS/RCP

2008-04-14
2008-01-0803
An efficient development environments such as Software-in-the-Loop Simulation (SILS) and Rapid Control Prototyping (RCP) have been widely used to reduce the development time and cost of real-time ECUs. However, conventional SILS does not consider temporal behaviors caused by computation time, task scheduling, network-induced delays, and so on. As a result, the control performance of ECU is likely to be degraded after implementation. To overcome this problem, SILS/RCP which considers the temporal behaviors was suggested in the previous research. In this study, we validated the proposed SILS/RCP environments which are used to design an Electronic Stability Control (ESC) system which is one of the hard real-time control systems. The proposed SILS/RCP environments make it possible to realize ECUs in the early design phase by considering temporal behaviors.
Technical Paper

A Fault Detection Method for Electric Parking Brake (EPB) Systems with Sensorless Estimation Using Current Ripples

2007-08-05
2007-01-3660
A fault detection method with parity equations is proposed in this paper. Due to low cost implementation, the velocity of a motor is not measurable in EPB systems. Therefore, residuals are not reliable with a low resolution encoder to estimate the motor velocity. In this paper, we propose a fault detection method with sensorless estimation using current ripples. The method estimates position and velocity of the motor by detecting periodical oscillations of the armature current caused by rotor slots. This method could estimate position and velocity of the motor with less computational effort than a state observer. Moreover, the method is less sensitive to motor parameters than model-based estimation methods. The effectiveness of this method is validated with experimental data. The simulation results show that various faults have their own residual patterns. Therefore, we could detect the fault by monitoring the residual signals.
Technical Paper

A Nonlinear Proportional Controller for Electric Parking Brake (EPB) Systems

2007-08-05
2007-01-3657
This paper presents three types of controllers for Electric Parking Brake (EPB) Systems: bang-bang, linear proportional (P), and nonlinear proportional (P) controller. Mechanical and electrical parts of EPB system are modeled and implemented using Modelica language. There is good agreement between simulation and experimental results. For the stability analysis, the EPB system is modeled as a state-dependent switched system with simplified friction dynamics. From simulation and experimental results, it turns out that the nonlinear P controller provides good uniformity in performance and robustness among them.
Technical Paper

Sensor Fault Detection Algorithm for Continuous Damping Control(CDC) System

2007-08-05
2007-01-3560
This paper presents a model based sensor fault detection and isolation algorithm for the vertical acceleration sensors of the Continuous Damping Control (CDC) system, installed on the sprung mass. Since sensor faults of CDC system have a critical influence on the ride performance as well as the vehicle stability, the sensor fault detection algorithm must be implemented into the overall CDC algorithm. In this paper, each vertical acceleration sensor installed on the sprung mass (two in the front corners and one in the rear) separately estimates the vertical acceleration of the center of gravity of the sprung mass. Then, the sensor fault is detected by cross-checking all three vertical acceleration estimates independently obtained by the each vertical acceleration sensor.
Technical Paper

Offset Compensation Algorithms for the Yaw Rate and Lateral Acceleration Sensors

2007-08-05
2007-01-3561
The paper presents a new offset compensation method of a yaw rate sensor and a lateral acceleration sensor. It is necessary to compensate the offsets of the analog sensors, such as the yaw rate sensor and the lateral acceleration sensor, to acquire accurate signals. This paper proposes two different offset compensation algorithms, the sequential compensation method and the model based compensation method. Both algorithms are combined with the algorithm map depending on the vehicle driving status. The proposed algorithm is verified by the computer simulations.
Technical Paper

A Numerical Approach to Investigate Transient Thermal and Conversion Characteristics of Automotive Catalytic Converter

1998-02-23
980881
This work attempts a systematic investigation of the effects of flow maldistribution on the light-off behavior of a monolithic catalytic converter. To achieve this goal, a combined chemical reaction model and three-dimensional computational fluid dynamic modeling technique has been developed. The computational results reveal that the influence of area ratio was significant during high flow transient conditions. The cross-sectional area ratio with the smaller value increases the thermal gradient due to flow maldistribution in the monolith, which degrades performance of catalytic converter. Due to locally concentrated high velocities, large portions of the monolith remain cold and CO,HC are unconverted during warm up period. Therefore, flow maldistribution can cause a significant retardation of the light-off and can eventually worsen the conversion efficiency.
Technical Paper

Vehicle Mass Estimator for Adaptive Roll Stability Control

2007-04-16
2007-01-0820
Rollover is one of the significant life threatening factors in SUVs (Sports Utility Vehicles). By applying braking or steering, active roll stability controllers help prevent rollover accidents in SUVs. The performance of these controllers is very sensitive to vehicle inertial parameters such as vehicle mass and mass center height. In this paper, a unified estimation method for vehicle mass is proposed considering available driving conditions, where three estimation algorithms are developed based on longitudinal, lateral or vertical vehicle dynamics, respectively. The first algorithm is designed using the longitudinal vehicle dynamics and the recursive least square with the disturbance observer technique for longitudinal traveling case. The second algorithm is designed using the lateral vehicle dynamics where the lateral velocity is estimated with the kinematic vehicle model via the Kalman filter.
Technical Paper

Design of the Occupant Protection System for Frontal Impact Using the Axiomatic Approach

2007-04-16
2007-01-1210
The functional requirements (FRs) and design equation of a flexible system change in a continuous manner with respect to a variable such as time. An event driven flexible system is defined as a subcategory of the flexible system in that it changes in a discrete space. A design scenario is developed for the event driven systems. The design equation for each event should be defined by using the axiomatic approach and the design equations are assembled to form a full design equation. The design equation for each event can be established by sensitivity analysis. In conceptual design, the design order is determined based on the full design equation. Design parameters (DPs) are found to satisfy FRs in sequence. A design parameter may consist of multiple design variables. In detailed design, the design variables are determined. The occupant protection system is an event driven flexible system because the design matrix and its elements change according to the impact speed.
Technical Paper

Development of a Model Based Predictive Controller for Lane Keeping Assistance

2008-04-14
2008-01-1454
Lane keeping assistant system (LKAS) is expected to reduce the driver workload with assisting the driver during driving and is regarded as a promising active safety system. For the proposed LKAS which requires cooperative driving between driver and the assistance system, a Model Based Predictive Controller (MBPC) is proposed to minimize the effect of system overshoot caused by the time delay from the vision-based lane detection system. In order to validate the proposed LKAS controller, a HIL (Hardware In the Loop) simulator is built using steering mechanism, single camera, torque motor, sensors, etc. The performance of the proposed system is demonstrated in various roadways.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Fault Detection Algorithm Design for Electro-Mechanical Brake

2009-04-20
2009-01-1219
Electro-Mechanical Brake (EMB) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor possible faults in EMB systems. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.
Technical Paper

Closed-Loop Evaluation of Vehicle Stability Control (VSC) Systems using a Combined Vehicle and Human Driving Model

2004-03-08
2004-01-0763
This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) systems using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator which consists of a three-dimensional vehicle dynamic model, interface between human driver and vehicle simulator, three-dimensional animation program and a visual display has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.
Technical Paper

The Design of a Controller for the Steer-by-Wire System Using the Hardware-In-the-Loop-Simulation System

2002-05-07
2002-01-1596
In this study, a Steer-by-Wire (SBW) controller was developed using the Hardware-In-the-Loop-Simulation (HILS) system. The mechanism of the HILS system consists of a hydraulic actuator for a lateral force on the front tires in a real vehicle. There are two motors in the SBW system controlled by one Electronic Control Unit (ECU). One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability. The SBW controller's availability was verified through a number of simulations on the HILS system. The SBW fail-safe logic was tested through various simulations of the hazard environment on the HILS system. Consequently, the control logic of the SBW system was developed easily and safely in a laboratory.
Technical Paper

Modeling Flash Breakup for a Direct-Injection Spark-Ignition Gasoline Engine

2017-03-28
2017-01-0548
An important challenge for modeling Direct-Injection Spark-Ignition (DISI) gasoline engines is understanding flash boiling spray. Flash boiling occurs when the ambient pressure is lower than the vapor pressure of the fuel and affects the spray structure and mixture formation process inside an engine. Gasoline is a multi-component fuel and the effects of each component on flash boiling are difficult to estimate. As a preliminary study to investigate the mixture formation process of the flash boiling spray, a single-component fuel was used to validate the flash breakup model. The flash breakup model was applied to KIVA 3V release2. Bubble growth in the drop was modelled by the Rayleigh-Plesset equation. When bubbles grow to satisfy the breakup criterion, breakup occurs and induces a smaller SMD for flash breakup cases. To investigate flash breakup modeling, simulations without the flash breakup model and with the flash breakup model was compared.
Technical Paper

Driving Posture Evaluation through Electroencephalographic Measurement and Digital Human Modeling

2017-03-28
2017-01-1394
Drivers’ physical and physiological states change with prolonged driving. Driving for extended periods of time can lead to an increased risk of low back pain and other musculoskeletal disorders, caused by the discomfort of the seats. Static and dynamic are the two main categories must be considered within the seating development. The posture and orientation of the occupant are the important factors on static comfort. Driving posture measurement is essential for the evaluation of a driver workspace and improved seat comfort design. This study evaluated the comfortable driving posture through physiological and ergonomics measurements of an automotive premium driver seat. The physiological evaluation includes electroencephalographic (EEG) for brain waves, Biopac’s AcqKnowledge program, and subjective measurements on 32 healthy individuals. JACK simulation was used for the ergonomics evaluation, i.e., the magnitude of the spinal loads about lumbar vertebrae was estimated.
Technical Paper

Software-in-the-Loop Simulation Environment Realization using Matlab/Simulink

2006-04-03
2006-01-1470
This paper presents the Matlab/Simulink-based Software-in-the-Loop Simulation (SILS) tool which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is mainly dependent on the implemented software and hardware such as the real-time operating system, target CPU and communication protocol. In this research, the SILS components with temporal attributes are specified as tasks, task executions, real-time schedulers, and real-time networks. Methods for realizing these components in graphical block representations are investigated with Matlab/Simulink, which is the most commonly used tool for designing and simulating control algorithms in control engineering. These components are modeled in graphical blocks of Matlab/Simulink.
Technical Paper

Cylinder-by-Cylinder Engine Model and ECU-in-the-Loop Simulation of Common-Rail Direct Injection Diesel Engine

2006-04-03
2006-01-0661
In this paper, a control oriented cylinder-by-cylinder engine model (CCEM) and ECU-in-the-loop simulation (EILS) of common-rail direct injection (CRDI) diesel engine are presented. The CCEM includes the combustion model of torque production so that it is possible to acquire the in-cycle information, such as cylinder pressure. EILS environment using the CCEM is proposed for cylinder pressure based controller design. It allows real-time engine simulation available, and is applicable for developing the control logic and validating prototype ECUs. Finally, the accuracy of the CCEM is evaluated by the engine experimental data.
X