Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Modeling the Kinetic and Thermal Interaction of UWS Droplets Impinging on a Flat Plate at Different Exhaust Gas Conditions

2021-09-05
2021-24-0079
The selective catalytic reduction has seen widespread adoption as the best technology to reduce the NOx emissions from internal combustion engines, particularly for Diesels. This technology uses ammonia as a reducing agent, which is obtained injecting an ammonia carrier into the exhaust gas stream. The dosing of the ammonia carrier, usually AdBlue, is the major concern during the design and engine calibration phases, since the interaction between the injected liquid and the components of the exhaust system can lead to the undesired formation of solid deposits. To avoid this, the thermal and kinematic interaction between the spray and the components of the after treatment system (ATS) must be modeled accurately. In this work, the authors developed a Conjugate Heat Transfer (CHT) framework to model the kinetic and thermal interaction among the spray, the eventual liquid layer and the pipe walls.
Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Journal Article

CFD Investigation of the Effect of Fluid-Structure Interaction on the Transmission Loss of ICE Silencers

2016-06-15
2016-01-1815
In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Numerical modeling of unsteady reacting flows in the exhaust system of an S.I. engine including the catalytic converter

2000-06-12
2000-05-0175
Recent advances in the field of numerical modeling of unsteady reacting flows in the exhaust system of s.i. engines are presented in the paper. In particular, it is shown that the integration of a suitable chemical and thermal model for the catalytic converter within a 1D fluid dynamic simulation code has allowed the prediction of the exhaust gas composition from the cylinder to the tailpipe outlet, considering its variation across the catalyst. The composition of the exhaust gas, discharged by the cylinder, is calculated by means of a two- zone combustion model, including emission sub-models. The catalytic converter is simulated by a 1D fluid dynamic and chemical approach, considering laminar flow in each tiny channel of the substrate and chemical reactions in the solid phase, within the wash-coat. The predicted reaction rates are used to determine the specie source terms to be included in the one-dimensional fluid dynamic conservation equations.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Parametric Comparison of Well-Mixed and Flamelet n-dodecane Spray Combustion with Engine Experiments at Well Controlled Boundary Conditions

2016-04-05
2016-01-0577
Extensive prior art within the Engine Combustion Network (ECN) using a Bosch single axial-hole injector called ‘Spray A’ in constant-volume vessels has provided a solid foundation from which to evaluate modeling tools relevant to spray combustion. In this paper, a new experiment using a Bosch three-hole nozzle called ‘Spray B’ mounted in a 2.34 L heavy-duty optical engine is compared to sector-mesh engine simulations. Two different approaches are employed to model combustion: the ‘well-mixed model’ considers every cell as a homogeneous reactor and employs multi-zone chemistry to reduce the computational time. The ‘flamelet’ approach represents combustion by an ensemble of laminar diffusion flames evolving in the mixture fraction space and can resolve the influence of mixing, or ‘turbulence-chemistry interactions,’ through the influence of the scalar dissipation rate on combustion.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

A LES Study on the Evolution of Turbulent Structures in Moving Engine Geometries by an Open-Source CFD Code

2014-04-01
2014-01-1147
The dynamics and evolution of turbulent structures inside an engine-like geometry are investigated by means of Large Eddy Simulation. A simplified configuration consisting of a flat-top cylinder head with a fixed, axis-centered valve and low-speed piston has been simulated by the finite volume CFD code OpenFOAM®; the standard version of the software has been extended to include the compressible WALE subgrid-scale model, models for the generation of synthetic turbulence, some improvements to the mesh motion strategy and algorithms for LES data post-processing. In order to study both the initial transient and the quasi- steady operating conditions, ten complete engine cycles have been simulated. Phase and spatial averages have been performed over cycles three to ten in order to extract first and second moment of velocity; these quantities have then been used to validate the numerical procedure by comparison against experimental data.
Technical Paper

CFD Modeling of Compact Heat Exchangers for I.C. Engine Oil Cooling

2019-09-09
2019-24-0179
This work describes the development of a computational model for the CFD simulation of compact heat exchangers applied for the oil cooling in internal combustion engines. Among the different cooler types, the present modeling effort will be focused on liquid-cooled solutions based on offset strip fins turbulators. The design of this type of coolers represents an issue of extreme concern, which requires a compromise between different objectives: high compactness, low pressure drop, high heat-transfer efficiency. In this work, a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins as heat transfer enhancer, has been developed. The main problem is represented by the need of considering different scales in the simulation, ranging from the characteristic size of the turbulator geometry (tipically μm - mm) to the full scale of the overall device (typically cm - dm).
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
X