Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

2001-03-05
2001-01-1074
Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

Lubrication and Ventilation System of Modern Engines - Measurements, Calculations and Analysis

2002-03-04
2002-01-1315
The main function of an engine's lubrication system is to supply the different engine components with sufficient oil under all operating conditions. The demand of modern engines regarding the necessary oil pressure and flow of the individual components is influenced by the engine speeds and the accelerations due to the vehicle driving conditions. In addition to that, the lubrication system effects the following topics: The drive power of the oil pump which is influenced by the oil pump capacity, the oil pressure and mechanical losses of the oil pump. The oil mass which is supplied to the engine oil consumers and flows back via the oil return system to the crankcase and the oil pan. In the crankcase ventilation system, oil and gas have to be separated. The oil aeration due to the oil mass in the crankcase and the moving parts. The ventilation losses in the crankcase which are influenced by the axial ventilation areas and the moved oil mass.
Technical Paper

Development of a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2017-03-28
2017-01-0632
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
Technical Paper

Development of Combustion System for a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2016-10-17
2016-01-2243
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of the combustion system. Considering air/fuel mixture, fuel wall impingement and even future potential for lean burn combustion, a symmetrical layout and a central position for the injector with 200bar injection pressure was determined.
Technical Paper

Port Fuel Injection of CNG for Downsized 1-Liter 3-Cylinder Turbocharged Engine with High Efficiency

2017-10-08
2017-01-2275
In order to meet increasingly stringent emission regulations and reduce fuel consumption, development of modern powertrain is becoming more complicated, combining many advanced technologies. Gasoline engine downsizing is already established as a proven technology to reduce vehicle fleet CO2 emissions. Compressed natural gas (CNG) offers increased potential to further reduce both tailpipe CO2 and other regulated exhaust gas emissions without compromising driving performance. In this study, a turbocharged CNG port fuel injection (PFI) engine was developed based on gasoline version. Making most use of positive fuel properties of CNG, the paper quantifies the performance characteristics of downsized CNG engine considering reduced knock sensitivity, adaption of compression ratio and combustion efficiency. While peak cylinder pressure was controlled below 120 bar, peak torque 180Nm, same level as gasoline variant, was realized from 3000rpm.
Technical Paper

Design of Engine Gear-Driven Mass Balance Unit and NVH Performance Optimization

2012-04-16
2012-01-0890
Extensive experimental and numerical investigations with respect to mass balance unit (MBU) were reported to improve the vibration and acoustic performance for inline 4-cylinder engine due to unbalanced inherent secondary order inertial forces. Design of gear-driven MBU with two parallel shafts and two gear pairs which was positioned beneath the crankshaft would be described in the paper. For the sake of compact package and reliable design, the driving gear ring of the system was shrink fitted onto the crankweb, and issues such as lubrication, strength, assembly were taken into account during design process. As a result, 93.66% of 2nd order mass force balance was achieved and2nd vibration level of engine was decreased remarkably. However, acoustical behavior was deteriorated due to gear impact and rattle at the engagement. Extra efforts were paid to solve the unpleasant noise through internal and external excitation optimizations.
Technical Paper

Lamborghini Approach to Engine Downsizing Engine Friction Modeling

2013-09-08
2013-24-0088
Downsizing, down speeding and hybridization are becoming a standard in the automotive industry. This paper was initiated to answer Automobili Lamborghini R&D's question: what does downsizing mean In technical literature downsizing is often referred to as reducing displacement and, sometimes, cylinders. Through a methodological approach, analysis and experimental activities Automobili Lamborghini, with FEV's support, shows that downsizing in terms of engine friction reduction means only reduction of displacement. Using the Aventador V12 6.5 liter engine as a baseline, two 4.3 liter engines were designed, a V8 and a V12. The engine friction losses of these two engines were calculated all over the engine speed range and during the NEDC cycle utilizing a simulation tool and verified through FEV's “Strip-Method” database. This approach gives us the holistic understanding on engine components design and which technologies should be introduced for the next Lamborghini engine generation.
Technical Paper

Cylinder Liner Deformation Analysis - Measurements and Calculations

1998-02-23
980567
Modern passenger car engines are designed to operate at increasingly higher rated engine speeds with higher thermal loads. To reduce engine weight and length, the engines are usually siamesed without a cooling path between the cylinder liners. This leads to high temperatures in the siamesed area and to an increase in liner deformation. The distortion of the cylinder liners of internal combustion engines has a significant affect on engine operation. It can affect the oil consumption, the blow-by, the wear behavior and, due to friction, the fuel consumption. In order to achieve future requirements regarding exhaust emissions and fuel consumption, the development of low distortion engine blocks will play a significant role.
Technical Paper

Cooling System Development and Optimization with the Computer Code COOL

1998-02-23
980425
Because of increasing stresses in combustion engines and critical comfort requirements of engine warm-up behavior, FEV has placed a special emphasis on solving cooling system problems. In addition to 3D-CFD calculations and special FEV measurement techniques - such as fiber optical cavitation detection, instationary heat balance measurements during warm-up, etc. - FEV has developed a 1D computer code, known as ‘COOL’, to optimize cooling systems already during the engine design phase or to analyse and eliminate weaknesses in the coolant circuit of existing engines. Beside the algorithm and structure of COOL the paper mainly presents the analysis capabilities of the code. In this connection the emphasis is placed on examples to the current OEMs problem: transient warm-up of DI-diesel engines. The COOL-code is so far a unique CAE tool which exclusively has been applied to projects conducted by FEV. Because of the increasing demand it is planned to commercialize the code in 1998.
Technical Paper

Connecting Rod Bearing Operation with Aerated Lube Oil

1998-05-04
981404
The connecting rod big-end bearing is one of the most heavily loaded components of the lubrication system of high speed combustion engines. The bearing's oil supply has to be designed consciantious in order to ensure an immaculate reliability in operation. The supply oil flow has to pass the main bearing and the rotating crankshaft before entering the connecting rod bearing. It is common knowledge that the centrifugal forces due to the crankshaft rotation influence the oil flow through the also rotating supply bore. The centrifugal forces effect a parabolic pressure profile along the supply bore. The oil pump has to ensure a certain pressure level in the main oil gallery (depending on the engine speed and the spherical positioning of the rotating bore) to overcome these centrifugal forces. If the oil pressure is lower than this certain level the bearing's oil supply will be interrupted - bearing damage is the consequence.
Technical Paper

PIFFO - Piston Friction Force Measurements During Engine Operation

1996-02-01
960306
Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. Particularly in typical city driving, the reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston group has a high share at total engine friction. This offers a high potential to optimize piston group friction. The paper presents results of recent research and development work in the field of the tribological system piston/piston ring/cylinder bore.
Technical Paper

Low Cycle Fatigue of Aluminum Cylinder Heads - Calculation and Measurement of Strain under Fired Operation

1999-03-01
1999-01-0645
The problem of cracks in cylinder heads due to low cycle fatigue (thermal fatigue) is well known for engines with high specific power output. However it is still difficult to predict the lifetime of a new cylinder head due to the number of influencing parameters and the complexity of material behavior. Better understanding of cylinder head fatigue can improve the development process of a new engine concerning CAE as well as mechanical testing efficiency. Therefore a CAE tool which can calculate strains and stresses as a function of time for a defined operating cycle of the engine was developed. In parallel a measuring technique was developed which allows to measure strains on the surface of the combustion chamber side of the cylinder head during fired engine operation. For different Aluminum-Silicon casting alloys the material behavior was described in the Finite Element Program ABAQUS by a nonlinear kinematic / isotropic hardening model.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Advantages of Coated Gasoline Particulate Filters in the CC2 Position for China 6B

2021-04-06
2021-01-0587
Gasoline Particulate Filters (GPF), are universally acknowledged as a reliable and high cost effective emission control technology for particulate mass (PM) and particulate number (PN). Bare GPFs can be modified by coating with catalytic washcoat to provide emission reduction for THC, CO and NOx while back pressure (BP) and filtration efficiency (FE) might be influenced. In this study, a four cylinder China 6B calibrated 1.6 L TGDI (turbo gasoline direct injection) vehicle was used to evaluate various catalyst combinations in the close-coupled and underfloor locations. In the close-couple 1 position (CC1), PGM loadings were varied on a 1 L TWC. Next in the close-coupled 2 position (CC2), coated and uncoated 1.4 L GPFs were evaluated. PGM loading was varied on the coated GPFs using 300/8 high porosity substrates. The uncoated GPFs used a 200/8 low porosity substrates. In the underfloor location, PGM loadings were varied on two 0.5 L TWC catalysts.
Technical Paper

Development Process to Optimize Design and Performance of Small Gasoline Engines

2007-10-30
2007-32-0093
The further optimization of modern gasoline engines needs sophisticated development tools to meet future emission legislation and fuel consumption targets. The multi-dimensional optimization process has to take into account parameters like Cylinder head and port flow design Valve train variabilities (e.g. camphasers, variable valve lift systems) In-cylinder charge motion and interaction with mixture preparation Resulting combustion characteristics Naturally aspirated and boosted operating conditions The paper presents an advanced development process, where a dedicated interaction between Gas dynamics and CFD simulation, Optical analysis tools (3D-PIV) and Engine test bench is used. Simulation approaches are typically used during the first concept and following design phase. Due to the complexity of simulation models and the need for a detailed validation, advanced optical analysis tools need to be integrated in the development process.
Technical Paper

Exhaust Heat Recovery System for Modern Cars

2001-03-05
2001-01-1020
The fuel consumption and the emissions of modern passenger cars are highly affected by the fluid and material temperatures of the engine. Unfortunately, the high thermal efficiencies of Direct Injection (DI) Diesel and Spark Ignition (SI) engines cause in many driving situations low heat transfer to the engine components and especially to the oil and the coolant. In these conditions the normal operating temperatures are not achieved. Especially at low ambient temperatures and low engine loads the requirement of a comfortable cabin heating and a fast warm-up of engine oil and coolant cannot be satisfied simultaneously. To reach the required warm-up performance, an Exhaust Heat Recovery System (EHRS) will be demonstrated. Further design and optimization processes for modern cooling systems in fuel-efficient engines require numerical and experimental investigations of supplemental heater systems to meet all requirements under all circumstances.
Technical Paper

Impact of Fuel Properties on GDI Injector Deposit Formation and Particulate Matter Emissions

2020-04-14
2020-01-0388
Gasoline Direct Injection (GDI) engines show advantages in reducing fuel consumption and gaseous pollution emissions when compared to Port Fuel Injection (PFI) engines. However, particulate matter emissions are an essential issue for GDI engine development due to increasingly stringent worldwide emission regulations. Previous studies have shown that gasoline fuel compositions, as well as deposits formed in GDI fuel injectors, can affect emissions in the GDI engine. In this work, the impact of gasoline fuel properties on forming injector deposits and the resulting effect on particulate emissions were investigated using a modern Chinese GDI engine. Six test fuels with different properties involving changes in olefins, aromatics, heavy (C9/C9+) aromatics, T90 and deposit control additive (DCA) were prepared based on the gasoline survey results from the Chinese gasoline fuel market and the China 6 gasoline fuel standard limits.
X