Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Numerical Simulations of Supersonic Diesel Spray Injection and the Induced Shock Waves

2014-04-01
2014-01-1423
Shock waves have been recently observed in high-pressure diesel sprays. In this paper, three-dimensional numerical simulations of supersonic diesel spray injection have been performed to investigate the underlying dynamics of the induced shock waves and their interactions with the spray. A Volume-of-Fluid based method in the CFD software (CONVERGE) is used to model this multiphase phenomena. An adaptive Mesh Refinement (AMR) scheme is employed to capture the front of the spray and the shock waves with high fidelity. Simulation results are compared to the available experimental observations to validate the numerical procedure. Parametric studies with different injection and ambient conditions are conducted to examine the effect of these factors on the generation of shock waves and their dynamics.
Technical Paper

Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning

2020-04-14
2020-01-1313
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated.
Journal Article

Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors

2015-09-01
2015-01-1850
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

Novel Tabulated Combustion Model Approach for Lifted Spray Flames with Large Eddy Simulations

2016-10-17
2016-01-2194
In this work, a turbulent combustion model is developed for large eddy simulation (LES) using a novel flamelet tabulation technique based on the framework of the multi-flamelet representative interactive flamelet (RIF) model. The overall aim is to develop a detailed model with elaborate chemistry mechanisms, LES turbulence models and highly resolved grids leveraging the computational cost advantage of a tabulated model. A novel technique of implementing unsteady flamelet libraries by using the residence time instead of the progress variables is proposed. In this study, LES of n-dodecane spray flame is performed using the tabulated turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. This model is then validated against igniting n-dodecane sprays under diesel engine conditions.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Technical Paper

Fuel Property Effects on Spray Atomization Process in Gasoline Direct Injection

2020-04-14
2020-01-0329
This paper presents a computational fluid dynamics (CFD) study of the Engine Combustion Network (ECN) Spray G under non-vaporizing condition, focusing on the impacts of fuel properties as well as realistic geometry on the atomization process. The large-eddy-simulation method, coupled with the volume-of-fluid method, is used to model the high-speed turbulent two-phase flow. A moving-needle boundary condition is applied to capture the internal flow boundary condition accurately. The injector geometry was measured with micron-level resolution using x-ray tomographic imaging at the Advanced Photon Source at Argonne National Laboratory, providing detailed machining tolerance and defects from manufacturing and a realistic rough surface. A 2.5-μm fine mesh is used to sufficiently resolve the details of liquid-gas interface and the breakup process.
Journal Article

Single-Hole Asymmetric GDI Injector: Influence of the Drill Angle and the Counter-Bore under Flash-Boiling and Non-Flash-Boiling Conditions

2018-04-03
2018-01-0288
Sac-type nozzles, which are often used in gasoline direct injection (DI), induce asymmetry to the spray. The drill angle, that is, the angle between the axis of the nozzle and the axis of the injector, is one of the key causes of the asymmetric flow. Despite its significance, the influence of the drill angle on spray is poorly understood. In the current work, a parametric study has been carried out using single-hole sac-type nozzles by varying the drill angle. The drill angle was varied from a value of 0° to 45° in steps of 15°. Apart from the geometric variation, the ambient pressure and the fuel temperature were varied to achieve flash-boiling and non-flash-boiling spray conditions. Simulations were carried out using an in-house computational fluid dynamics (CFD) solver that accounts for thermodynamic non-equilibrium coupled with a liquid-gas interface-area-density transport model to account for primary atomization of the fuel.
Journal Article

Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control

2018-04-03
2018-01-0193
It is challenging to develop highly efficient and clean engines while meeting user expectations in terms of performance, comfort, and drivability. One of the critical aspects in this regard is combustion noise control. Combustion noise accounts for about 40 percent of the overall engine noise in typical turbocharged diesel engines. The experimental investigation of noise generation is difficult due to its inherent complexity and measurement limitations. Therefore, it is important to develop efficient numerical strategies in order to gain a better understanding of the combustion noise mechanisms. In this work, a novel methodology was developed, combining computational fluid dynamics (CFD) modeling and genetic algorithm (GA) technique to optimize the combustion system hardware design of a high-speed direct injection (HSDI) diesel engine, with respect to various emissions and performance targets including combustion noise.
Journal Article

Development of a Virtual CFR Engine Model for Knocking Combustion Analysis

2018-04-03
2018-01-0187
Knock is a major bottleneck to achieving higher thermal efficiency in spark ignition (SI) engines. The overall tendency to knock is highly dependent on fuel anti-knock quality as well as engine operating conditions. It is, therefore, critical to gain a better understanding of fuel-engine interactions in order to develop robust knock mitigation strategies. In the present work, a numerical model based on three-dimensional (3-D) computational fluid dynamics (CFD) was developed to capture knock in a Cooperative Fuel Research (CFR) engine. For combustion modeling, a hybrid approach incorporating the G-equation model to track turbulent flame propagation, and a homogeneous reactor multi-zone model to predict end-gas auto-ignition ahead of the flame front and post-flame oxidation in the burned zone, was employed.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
X