Refine Your Search

Topic

Author

Search Results

Technical Paper

Toxicologically Acceptable Levels of Methanol and Formaldehyde Emissions from Methanol-Fueled Vehicles

1984-10-01
841357
The increased interest in use of methanol makes it important to determine what levels of methanol and formaldehyde emissions may be acceptable. This paper reviews the available health data for methanol and formaldehyde to define what approximate ranges of concentrations, termed ranges of concern, could be acceptable from a toxicological viewpoint. Air quality models are then used to predict the in-use fleet average exhaust emission levels in localized situations (heavily impacted by mobile sources) corresponding to these ranges of concern. Using predicted fleet compositions, approximate target emission levels are given for the light-duty portion of the fleet which could yield these fleet averages. Finally, there is a brief summary of available methanol and formaldehyde emissions data from neat methanol-fueled vehicles which are compared to the target levels.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Technical Paper

Start Catalyst Systems Employing Heated Catalyst Technology for Control of Emissions from Methanol-Fueled Vehicles

1993-03-01
930382
EPA published the first results from evaluations of electrically heated catalyst (EHC) technology for light-duty automotive applications. Since then, a number of automakers, suppliers, and government agencies have published results from their heated catalyst development and evaluation programs. EPA has evaluated a number of start catalyst systems incorporating an EHC start catalyst followed by a larger, conventional main catalyst. These systems have proven very effective at reducing cold start related emissions from methanol vehicles at low mileage. This paper compares the results from several EHC + main catalyst evaluations conducted by EPA.
Technical Paper

Resistive Materials Applied to Quick Light-off Catalysts

1989-02-01
890799
The application of resistive materials as part of an exhaust emission control system is presented and discussed. The importance of cold start emissions is emphasized, and results are presented from experiments conducted with two different conductive materials. Most of the testing was conducted using methanol as the fuel, although some tests were run using gasoline-fueled vehicles.
Technical Paper

Performance of Sequential Port Fuel Injection on a High Compression Ratio Neat Methanol Engine

1987-11-01
872070
A Sequential fuel injection system was fitted to a 2 liter Nissan NAPS-Z engine that had been modified for neat methanol operation. The specific modifications for high compression operation with neat methanol are described, and baseline brake thermal efficiency and engine out emissions are established. Sequential injection operation on neat methanol included varying the beginning of injection between 50°BTDC and 250°ATDC over an equivalence ratio of 0.6 to 0.9. Efficiency and emission results with the Sequential system are compared to those from the base system and from selected references. For the low speed, steady state conditions used in this program, the Sequential system did not show any general improvement in efficiency or emissions. This result is directionally opposite to that observed in one reference. The apparent cause for the divergent results is the absence of mechanisms in this experiment to prevent mixing along the cylinder axis.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
Technical Paper

Inspection/Maintenance in the 1990's

1987-08-01
870621
In the 1990's there will be a different mix of vehicle technologies than existed in the late 1970's when inspection/Maintenance (I/M) programs were first mandated. These changes include the widespread use of “closed-loop” computer control of engine parameters and fuel injection. Several studies by EPA are examined to determine the effect of these changes on existing I/M programs and to investigate new methods of vehicle inspection. The report discusses the effectiveness of a standard idle emission test versus other inspection methods, the role of proper preconditioning, self-diagnostic trouble code checks as a method to identify high emitting vehicles, uncertainties in predicting tampering and misfueling rates for the future, problems with decentralized programs, and the effectiveness of I/M repairs in reducing vehicle emissions as measured on the Federal Test Procedure.
Technical Paper

In-Use Emissions of 1980 and 1981 Passenger Cars: Results of EPA Testing

1982-02-01
820975
This paper presents the results of several emission testing programs conducted by the U.S. Environmental Protection Agency. The test vehicles were primarily 1980 and 1981 passenger cars which were obtained at random from private owners. Some 1982 models were also tested. The 1328 vehicles were selected from the Los Angeles area as well as from a number of other low-altitude locations. The test sequence included the Federal Test Procedure, the Highway Fuel Economy Test and several short cycle tests. The primary purpose of the program was to gather information on current vehicles which could be used in calculations and projections of air quality and aid development of programs to improve it. The results of the program indicate that these vehicles are capable of maintaining low emission levels although high levels are also possible due to defects, deterioration, or tampering. Inspection/Maintenance programs are a feasible and effective means for correcting high levels when they occur.
Technical Paper

Identifying Excess Emitters with a Remote Sensing Device: A Preliminary Analysis

1991-08-01
911672
There has been considerable interest in applying remote measuring methods to sample in-use vehicle emissions, and to characterize fleet emission behavior. A Remote Sensing Device (RSD) was used to measure on-road carbon monoxide (CO) emissions from approximately 350 in-use vehicles that had undergone transient mass emission testing at a centralized I/M lane. On-road hydrocarbon (HC) emissions were also measured by the RSD on about 50 of these vehicles. Analysis of the data indicates that the RSD identified a comparable number of the high CO emitters as the two speed I/M test only when an RSD cutpoint much more stringent than current practice was used. Both RSD and I/M had significant errors of omission in identifying High CO Emitters based on the mass emission test. The test data were also used to study the ability of the RSD to characterize fleet CO emissions.
Technical Paper

IM240 Repair Verification: An Inexpensive Dynamometer Method

1994-03-01
940431
An inexpensive system was designed that would allow repair shops to verify the adequacy of repairs made to cars that had previously failed the new high-tech I/M test (IM240). Before and after repair tests on a limited number of vehicles were performed with both official IM240 and prototype repair grade (RG240) equipment systems. Analyses were performed to determine if the RG240 system concept is capable of determining if the repairs performed resulted in adequate emissions reductions to assure a passing IM240 retest. This study focuses on development of a prototype RG240 system consisting of a 100 SCFM CVS, a dynamometer with an eddy current power absorber and non-adjustable 2000 pound inertia flywheel, and a BAR 90 emissions analyzer with an additional nitric oxide analyzer.
Technical Paper

Fleet Test Using Butane and Propane Mixtures

1998-10-19
982444
This paper describes the results of a liquefied petroleum gas (LPG) fleet test conducted using para-transit, medium-duty vehicles. The vehicles were part of an active municipal fleet providing daily service on varying operating routes. Over a period of nine months, each vehicle was fueled with a series of butane/propane mixtures. The mixtures tested were HD5 LPG as the baseline fuel, 20 percent butane/80 percent propane, 30 percent butane/70 percent propane, and a final blend of 50 percent butane/50 percent propane by volume. The test vehicles showed improved fuel economy as the butane content increased in the fuel mixture, even without modification to existing LPG fuel systems. The improved fuel performance was consistent with the higher energy content of butane, compared to an equal volume of propane. The vehicles displayed no symptoms of performance or maintenance problems that would be related to operation of the fuel mixtures.
Technical Paper

Exhaust Emissions from In-Use Passenger Cars Equipped with Three-Way Catalysts

1980-06-01
800823
This paper presents the results of an exhaust emission testing program conducted by the U.S. Environmental Protection Agency. The test vehicles were 1978–1980 passenger cars of various makes and models. Each of the 686 vehicles tested was equipped with a three-way catalyst system and was certified to California standards. The purpose of the program was to gather information on current systems in customer use for projections on the ability of the three-way system to meet emission standards of the future. The results indicate that these systems are capable of achieving low emission levels although high levels are also possible due to defects, deterioration, or tampering.
Technical Paper

Exhaust Emissions from Heavy-Duty Trucks Tested on a Road Course and by Dynamometer

1975-02-01
750901
This is a summary compilation and analysis of exhaust-emission results and operating parameters from forty-five heavy-duty gasoline and diesel-powered vehicles tested over a 7.24-mile road course known as the San Antonio Road Route (SARR); and, for correlative purposes, on a chassis dynamometer.(2) Exhaust samples were collected and analyzed using the Constant Volume Sampler (CVS) technique similar to that used in emission testing of light-duty vehicles. On the road course, all equipment and instrumentation were located on the vehicle while electrical power was supplied by a trailer-mounted generator. In addition to exhaust emissions, operating parameters such as vehicle speed, engine speed, manifold vacuum, and transmission gear were simultaneously measured and recorded on magnetic tape. The forty-five vehicles tested represent various model years, GVW ratings, and engine types and sizes.
Technical Paper

Evaluation of a Passenger Car Equipped with a Direct Injection Neat Methanol Engine

1992-02-01
920196
The cyclic and steady-state vehicle emissions, fuel economy, performance, and cold start behavior of an automobile equipped with a direct injection methanol engine are compared with those of three other comparable vehicles. One of the comparable vehicles was powered by a gasoline-fueled engine, and the other two were Diesels. One of the Diesel-powered vehicles was naturally aspirated and the other was turbocharged. All evaluations were made using the same road load horsepower and equivalent test weight. All the evaluations were conducted at low mileage. The emissions of the methanol vehicle are compared to California low emission vehicle standards, and to the emissions of another methanol vehicle.
X