Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wet Clutch Drag Loss Simulation for Different Clutch Patterns

2022-08-30
2022-01-1118
Wet clutches drag loss simulation is essentially linked to the clutch friction surface patterns in addition to the main geometry and conditions of the interface (relative speed, separation, inner and outer radius, viscosity and boundary pressures). The clutch patterns promote cooling flow and micro-hydrodynamic effects to aid clutch separation but greatly complicate the simulation of drag loss during separation. These drag losses are important in understanding the system losses as well as finding the most effective clutch cooling strategy. Typical clutch models either only consider simple patterns, such as radial grooves, or require significant simulation efforts to evaluate. Additionally, many simple models require calibration to measurement of the actual clutch they try to model before they provide a useful model.
Technical Paper

Viability of Alternative Fuels to Decarbonize the World’s Largest Agricultural Tractor Market

2024-01-16
2024-26-0065
India is the market with the highest sales of agricultural tractors and the market with the highest number of agricultural tractor park, as well. Even though taking into account the lower average power of Indian agricultural tractors compared to regions with considerably larger field sizes, their cumulated diesel fuel consumption reaches a significant size. The possible use of alternative powertrains like battery-electric, especially considering the lower power of the Indian tractor market, seems feasible, but might be struggling with challenges in terms of charging infrastructure and the possibly resulting lower productivity due to required charging times. Therefore AVL proposes to investigate the use of alternative fuels for internal combustion engines, a topic which is also being discussed by other global tractor OEMs. In that context the focus is typically on higher tractor powers due to current storage limitations of battery-electric systems and other alternatives.
Technical Paper

Verification and Validation for Modular Development Platforms

2023-04-11
2023-01-0476
As electrified powertrains trends towards the new norm in development, the need to consider modular development approaches becomes more prevalent. Modular system developments seek to offer an adaptable product range by considering each system component (transmission, e-motor, inverter, battery, etc.) and system element (park-lock, disconnect, differential, etc.) as interchangeable. This can result in a lower cost development process overall to increase the returns for tier1 suppliers by expanding the marketability of the platform. Such an approach has hitherto held relatively low commercial interest as the rate of technological advancement negated the benefits of a modular development due to the lack of long-term competitivity. Previously large technological advances between successive productions and the relatively limited EV market, centred around SUV and small car applications, reduced the value in committing to a platform development.
Technical Paper

Vehicle Dynamics, Stability and Control

2014-04-01
2014-01-0134
In the last years the number of electronic controllers of vehicle dynamics applied to chassis components has increased dramatically. They use lookup table of the primary order vehicle global parameters as yaw rate, lateral acceleration, steering angle, car velocity, that define the ideal behavior of the vehicle. They are usually based on PID controllers which compare the actual behavior of every measured real vehicle data to the desired behavior, from look up table. The controller attempts to keep the measured quantities the same as the tabled quantities by using ESP, TC (brakes and throttle), CDC (control shocks absorbers), EDIFF(active differential) and 4WS (rear wheels active toe). The performances of these controls are good but not perfect. The improvement can be achieved by replacement of the lookup tables with a fast vehicle model running in parallel to the real vehicle.
Technical Paper

Vehicle Class Based Validation Program for Electrified Powertrain Vibration Testing

2023-04-11
2023-01-0920
Vibration testing is common in automotive industry validation and gains greater significance with increasing numbers of electrical components, which are particularly suspectable to vibration related failures. While the nature and intention of vibration testing is common, many contradicting testing standards claim to be a one-size-fits-all solution, leading to questions of which standard is correct for any specific application. This is compounded by the vast variation in vehicle types and applications (suspension systems, dampers, powertrain mass, tire radius, intended usage, etc.) This paper seeks to offer and demonstrate a method to determine characteristic vibration profiles, based on vehicle classes, and illuminate the process to accelerate these to an appropriate test profile. This can either be used to directly validate a system or to support the selection of the most appropriate vibration profile from options within standards.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of Powertrain Systems Based on Usage Space Analysis Considering Virtual Road Load Profiles

2024-04-09
2024-01-2424
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Journal Article

Turbocharger Noise Quality Parameters for Efficient TC Noise Assessment and Refinement

2016-06-15
2016-01-1817
Due to more challenging future emission legislations and the trend towards downsizing, the number of turbocharged (TC) engines, especially petrol engines, is steadily increasing. The usage of TC has high risk to cause different noise phenomena apparent in the vehicle interior which are often perceived as annoying for the passengers. In order to further improve consideration of TC topics in the development, objective judgment and monitoring of TC noise issues is of high importance. Therefore, objective parameters and corresponding tools that are especially focusing on TC noise phenomena have to be developed. One main target of these tools is to deliver an objective TC assessment in an efficient way and with minimum additional effort. Application of the criteria presented in this publication therefore allows acoustic engineers to judge the NVH behavior and annoyance of the TC with respect to its vehicle interior noise contribution.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

Thermal Simulation of High-Speed EV Transmission Bearings for Minimum Lubricant Volume

2022-08-30
2022-01-1120
Minimizing the lubricant volume in a transmission system reduces the churning losses and overall unit costs. However, lubricant volume reduction is also detrimental to the thermal stability of the system. Transmission overheating can result in significant issues in the region of loaded contacts, risking severe surface/sub-surface damage in bearings and gears, as well as reduction in the lubricant quality through advanced oxidation and shear degradation. The increasing trend of electrified transmission input speeds raises the importance of understanding the thermal limits of the system at the envelope of the performance to ensure quality and reliability can be maintained, as well as being a key factor in the development, effecting internal housing features for the promotion of lubrication. A nodal bearing thermal model will be shown which utilizes thermal resistances and smooth particle based CFD for determining bearing lubricant feed rates during operation.
Technical Paper

The Turbocharged GDI Engine: Boosted Synergies for High Fuel Economy Plus Ultra-low Emission

2006-04-03
2006-01-1266
Recent turbocharged Gasoline engines based on MPFI offer excellent power output and high nominal torque, however, also some disadvantages. The most significant restrictions of TC-engines - like poor fuel economy, limited emission capability and delayed transient response (turbo lag) - can be improved dramatically by a refined GDI application. The synergy effects of GDI, which are also partly used at naturally aspirated engines, are even more significant with turbocharging. The low emission capability of GDI enables turbocharged SULEV concepts within moderate cost of the emission / aftertreatment system. The outstanding low-end-torque, the high specific power and torque output of refined GDI-Turbo concepts enable high fuel efficiency combined with excellent fun to drive. Thus such GDI-Turbo concepts will become the most attractive technology to fulfill highest fuel economy-, emission- and performance requirements simultaneously.
Technical Paper

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System

2019-04-02
2019-01-0247
Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point.
Technical Paper

The Prospect and Benefits of Using the Partial-Averaged Navier-Stokes Method for Engine Flows

2020-04-14
2020-01-1107
This paper presents calculations of engine flows by using the Partially-Averaged Navier Stokes (PANS) method (Girimaji [1]; [2]). The PANS is a scale-resolving turbulence computational approach designed to resolve large scale fluctuations and model the remainder with appropriate closures. Depending upon the prescribed cut-off length (filter width) the method adjusts seamlessly from the Reynolds-Averaged Navier-Stokes (RANS) to the Direct Numerical Solution (DNS) of the Navier-Stokes equations. The PANS method was successfully used for many applications but mainly on static geometries, e.g. Basara et al. [3]; [4]. This is due to the calculation of the cut-off control parameter which requires that the resolved kinetic energy is known and this is usually obtained by suitably averaging of the resolved field. Such averaging process is expensive and impractical for engines as it would require averaging per cycles.
Technical Paper

The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture

2004-10-25
2004-01-3015
The influence of big-end bore fretting on connecting rod fatigue fracture is investigated. A finite element model, including rod-bearing contact interaction, is developed to simulate a fatigue test rig where the connecting rod is subjected to an alternating uniaxial load. Comparison of the model results with a rod fracture from the fatigue rig shows good correlation between the fracture location and the peak ‘Ruiz’ criterion, rather than the peak tensile stress location, indicating the potential of fretting to initiate a fatigue fracture and the usefulness of the ‘Ruiz’ criterion as a measure of location and severity. The model is extended to simulate a full engine cycle using pressure loads from a bearing EHL analysis. A fretting map and a ‘Ruiz’ criterion map are developed for the full engine cycle, giving an indication of a safe ‘Ruiz’ level from an existing engine which has been in service for more than 5 years.
Technical Paper

The OBD System Development Database - a Solution for Knowledge Management and Tool Supported Control System Design and Calibration

2014-04-01
2014-01-1171
The correct information about legal demands of the On-Board-Diagnostic (OBD) system in a vehicle project is required throughout the entire development process. Usually, the main obstacle in succeeding is to provide the company's expertise of some few experts for all employees who work in OBD related projects. The paper describes the AVL solution for knowledge management and tool supported control system design and calibration: OBD System Development Database. The software enables the user to access the regulatory requirements for a specific application and legislation from past, present and future (proposed rule-making) point of view. Information concerning already available and stored monitoring concepts is linked to the requirements in order to re-use potentially suitable concepts and to enable an efficient knowledge exchange within the company.
X