Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero-Dimensional Heat Release Modeling Framework for Gasoline Compression-Ignition Engines with Multiple Injection Events

2019-09-09
2019-24-0083
A zero-dimensional heat release model was developed for compression ignition engines. This type of model can be utilized for parametric studies, off-line optimization to reduce experimental efforts as well as model-based control strategies. In this particular case, the combustion model, in a simpler form, will be used in future efforts to control the combustion in compression ignition engines operating on gasoline-like fuels. To allow for a realistic representation of the in-cylinder combustion process, a spray model has been employed to allow for the quantification of fuel distribution as well as turbulent kinetic energy within the injection spray. The combustion model framework is capable of reflecting premixed as well as mixing controlled combustion. Fuel is assigned to various combustion events based on the air-fuel mixture within the spray.
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

Variable Air Composition with Polymer Membrane - A New Low Emissions Tool

1998-02-01
980178
Air can be enriched with oxygen and/or nitrogen by selective permeation through a nonporous polymer membrane; this concept offers numerous potential benefits for piston engines. The use of oxygen-enriched intake air can significantly reduce exhaust emissions (except NOx), improve power density, lessen ignition delay, and allow the use of lower-grade fuels. The use of nitrogen-enriched air as a diluent can lessen NOx emissions and may be considered an alternative to exhaust gas recirculation (EGR). Nitrogen-enriched air can also be used to generate a monatomic-nitrogen stream, with nonthermal plasma, to treat exhaust NOx. With such synergistic use of variable air composition from an on-board polymer membrane, many emissions problems can be solved effectively. This paper presents an overview of different applications of air separation membranes for diesel and spark-ignition engines. Membrane characteristics and operating requirements are examined for use in automotive engines.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors

2019-04-02
2019-01-1145
Fuel stratification effects on the combustion and emissions behaviors for partially premixed compression ignition (PPCI) combustion of a high reactivity gasoline (research octane number of 80) was investigated using the third generation Gasoline Direct-Injection Compression Ignition (Gen3 GDCI) multi-cylinder engine. The PPCI combustion mode was achieved through a double injection strategy. The extent of in-cylinder fuel stratification was tailored by varying the start of second fuel injection timing (SOIsecond) while the first fuel injection event was held constant and occurred during the intake stroke. Based on the experimental results, three combustion characteristic zones were identified in terms of the SOIsecond - CA50 (crank angle at 50% cumulative heat release) relationship: (I) no response zone (HCCI-like combustion); (II) negative CA50 slope zone: (early PPCI mode); and (III) positive CA50 slope zone (late PPCI mode).
Technical Paper

Ultrasonic Spot Welding of Galvanized Mild Steel to Magnesium AZ31B

2012-04-16
2012-01-0474
Ultrasonic spot welding (USW) is a promising joining method for magnesium to steel to overcome the difficulties of fusion welding for these two materials with significant differences in melting temperatures. In a previous paper, the results of ultrasonic spot welding of magnesium to steel, with sonotrode engaged Mg piece, was presented. In this study, same material combination (0.8-mm-thick galvanized mild steel and 1.6-mm Mg AZ31B-H24) was used, but with sonotrode engaging steel piece. Various welding time, from 0.4 to 2.0 sec, were applied. Tensile lap-shear test, optical metallography, and scanning electron micrography were conducted for joint strength measurement and microstructural evaluation. The joint strength reached over 4.2 kN at 1.8 sec welding time. Mg-Zn eutectic was formed at the interface, indicating the interfacial temperature over 344°C. The study demonstrated USW to be a viable process for potential manufacturing of mixed-metal joints.
Journal Article

Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

2010-04-12
2010-01-0975
Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344°C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Transient Particulate Emission Measurements in Diesel Engine Exhausts

2003-10-27
2003-01-3155
This paper reports our efforts to develop an instrument, TG-1, to measure particulate emissions from diesel engines in real-time. TG-1 while based on laser-induced incandescence allows measurements at 10 Hz on typical engine exhausts. Using such an instrument, measurements were performed in the exhaust of a 1.7L Mercedes Benz engine coupled to a low-inertia dynamometer. Comparative measurements performed under engine steady state conditions showed the instrument to agree within ±12% of measurements performed with an SMPS. Moreover, the instrument had far better time response and time resolution than a TEOM® 1105. Also, TG-1 appears to surpass the shortcomings of the TEOM instrument, i.e., of yielding negative values under certain engine conditions and, being sensitive to external vibration.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Journal Article

Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays

2015-09-01
2015-01-1873
Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays.
Technical Paper

Time-Resolved and Quantitative Characterization of Highly Transient Gasoline Sprays by X-Radiography

2002-06-03
2002-01-1893
Using synchrotron x-radiography and mass deconvolution techniques, this work reveals strikingly interesting structural and dynamic characteristics of the direct injection (DI) gasoline hollow-cone sprays in the near-nozzle region. Employed to measure the sprays, x-radiography allows quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs, revealing the most detailed near-nozzle mass distribution of a DI gasoline fuel spray ever detected. Based on the x-radiographs of the spray collected from four different perspectives, enhanced mathematical and numerical analyses were developed to deconvolute the mass density of the gasoline hollow-cone spray. This leads to efficient and accurate regression curve fitting of the measured experimental data to obtain essential parameters of the density distribution that are then used in reconstructing the cross-sectional density distribution at various times and locations.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Technical Paper

Time-Resolved Laser-Induced Incandescence Measurements of Particulate Emissions During Enrichment for Diesel Lean NOx Trap Regeneration

2005-04-11
2005-01-0186
Laser-induced incandescence is used to measure time-resolved diesel particulate emissions for two lean NOx trap regeneration strategies that utilize intake throttling and in-cylinder fuel enrichment. The results show that when the main injection event is increased in duration and delayed 13 crank-angle degrees, particulate emissions are very high. For a repetitive pattern of 3 seconds of rich regeneration followed by 27 seconds of NOx-trap loading, we find a monotonic increase in particulate emissions during the loading intervals that approaches twice the initial baseline particulate level after 1000 seconds. In contrast, particulate emissions during the regeneration intervals are constant throughout the test sequence.
Technical Paper

Thin-Film High Voltage Capacitors on Ultra-Thin Glass for Electric Drive Vehicle Inverter Applications

2014-04-01
2014-01-0417
The propulsion system in most Electric Drive Vehicles (EDVs) requires an internal combustion engine in combination with an alternating current (AC) electric motor. An electronic device called a power inverter converts battery DC voltage into AC power for the motor. The inverter must be decoupled from the DC source, so a large DC-link capacitor is placed between the battery and the inverter. The DC-link capacitors in these inverters negatively affect the inverters size, weight and assembly cost. To reduce the design/cost impact of the DC-link capacitors, low loss, high dielectric constant (κ) ferroelectric materials are being developed. Ceramic ferroelectrics, such as (Pb,La)(Zr,Ti)O3 [PLZT], offer high dielectric constants and high breakdown strength. Argonne National Laboratory and Delphi Electronics & Safety have been developing thin-film capacitors utilizing PLZT.
Technical Paper

Thermographic Measurements of Volatile Particulate Matter

2015-09-01
2015-01-1992
Semi-volatile species in the exhaust can condense on the primary particulate matter (PM) forming significant secondary PM mass downstream1. We developed a new thermographic technique to measure the volatility of a particle population. The instrument is called vapor-particle separator (VPS)2. A two-parameter model was used to interpret the thermographic data3. These two parameters define volatilization potential and thermodynamic capacity of the particles. The volatization potential delineates the unique particle volatility, while the thermodynamic capacity illustrates the work required to eliminate the particles. The thermodynamic capacity is found much smaller for small particles than that for large particles.
X