Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

V2V Next Steps: A Proposal for Simplification of V2V Safety Systems

2013-04-08
2013-01-0982
Much good work has been done in recent years by the National Highway Traffic and Safety Administration (NHTSA) in the design, specification, and testing of potential future Vehicle-to-vehicle (V2V) safety systems that will provide early warning of impending hazards to drivers. During this same time, Industry has been hard at work developing autonomous crash avoidance systems, based solely on data gathered from in-vehicle sensors. This paper proposes a fusion of V2V cooperative safety systems and in-vehicle sensor-based systems to increase the effectiveness of both systems and provide incentive to speed adoption of Dedicated Short Range Communication (DSRC) based V2V safety systems. The proposed solution may be used to provide many of the benefits of V2V safety applications while simplifying the deployment of these systems significantly as it does not require the robust infrastructure of the complete NHSTA proposed system currently under test.
Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

Using Electron Microscopy to Study Metal Fracture

1964-01-01
640126
Application of electron microscopy to the study of fractures and fracture mechanisms is reviewed. Static fractures and the fracture of multiphased alloys have been studied, and significant information obtained. Striations on the fracture surface are associated with fatigue crack propagation and are directly related to crack growth rates. Various factors such as strength level, corrosive media, and second-phase particles are known to influence the appearance of the striations under the electron microscope. Since the appearance under the microscope of each type of fracture is quite unique, electron microscopic fractography is also an aid in service failure analyses.
Technical Paper

Using Driver Primary Control Input to Determine the Timing of Alerts and Warnings

1997-08-06
972668
This study evaluated whether a driver's intention to comply with a stop sign, and/or negotiate a turn, or proceed on a straight path could be predicted through the identification of patterns in driver input to vehicle primary controls. Driver input to primary controls was assessed during intersection approach, according to type of intersection maneuver. Control input patterns, relative to intersection arrival, will be used to identify effective timing of driver alerts and warnings regarding potential hazards at an intersection. The results of this study will support the development of countermeasures to prevent or reduce the severity of intersection crashes.
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

Total Fuel Cycle Impacts of Advanced Vehicles

1999-03-01
1999-01-0322
Recent advances in fuel-cell technology and low-emission, direct-injection spark-ignition and diesel engines for vehicles could significantly change the transportation vehicle power plant landscape in the next decade or so. This paper is a scoping study that compares total fuel cycle options for providing power to personal transport vehicles. The key question asked is, “How much of the energy from the fuel feedstock is available for motive power?” Emissions of selected criteria pollutants and greenhouse gases are qualitatively discussed. This analysis illustrates the differences among options; it is not intended to be exhaustive. Cases considered are hydrogen fuel from methane and from iso-octane in generic proton-exchange membrane (PEM) fuel-cell vehicles, methane and iso-octane in spark-ignition (SI) engine vehicles, and diesel fuel (from methane or petroleum) in direct-injection (DI) diesel engine vehicles.
Journal Article

Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays

2015-09-01
2015-01-1873
Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Dynamics of Previously Conducted Full-Scale Heavy Vehicle Rollover Crashes

2003-11-10
2003-01-3384
The impact dynamics of full-scale heavy-vehicle rollover events were quantitatively evaluated. Videotapes of a variety of rollover events were collected. One tractor-semitrailer combination was rolled by a sudden steer, two combinations rolled after a barrier impact, and one straight truck was pulled down an embankment. The videotapes were analyzed to estimate the vehicles' roll rates and their vertical velocities upon striking the ground. These experimental values corroborate the results of vehicle dynamic simulations that had been previously conducted to replicate actual rollover crashes. Those crashes were the subject of an NTSB Special Investigation Report that examined the crashworthiness of cargo tank trucks carrying hazardous materials.
Technical Paper

The Department of Energy's Hydrogen Safety, Codes, and Standards Program: Status Report on the National Templates1

2006-04-03
2006-01-0325
A key to the success of the national hydrogen and fuel cell codes and standards developments efforts to date was the creation and implementation of national templates through which the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and the major standards development organizations (SDOs) and model code organizations coordinate the preparation of critical standards and codes for hydrogen and fuel cell technologies and applications and maintain a coordinated national agenda for hydrogen and fuel cell codes and standards
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

2015-04-14
2015-01-0329
Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios.
Technical Paper

Shock Waves Generated by High-Pressure Fuel Sprays Directly Imaged by X-Radiography

2002-06-03
2002-01-1892
Synchrotron x-radiography and a novel fast x-ray detector are used to visualize the detailed, time-resolved structure of the fluid jets generated by a high pressure diesel-fuel injection. An understanding of the structure of the high-pressure spray is important in optimizing the injection process to increase fuel efficiency and reduce pollutants. It is shown that x-radiography can provide a quantitative measure of the mass distribution of the fuel. Such analysis has been impossible with optical imaging due to the multiple-scattering of visible light by small atomized fuel droplets surrounding the jet. In addition, direct visualization of the jet-induced shock wave proves that the fuel jets become supersonic under appropriate injection conditions. The radiographic images also allow quantitative analysis of the thermodynamic properties of the shock wave.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Safety and Industrial Hygiene Issues Related to the Use of Oxygenates in Diesel Fuel

1999-05-03
1999-01-1473
Several candidate oxygenates have been proposed for use with diesel fuel. This paper examines the safety and health issues associated with the use of these oxygenates. The primary fire safety hazard associated with the use of oxygenates is increased diesel fuel volatility and consequent low flash point. Peroxide formation may be a hazard for some oxygenates, but no quantitative information on the extent of the hazard was located for any of the candidate oxygenates. Little information is available on inhalation, ingestion, or skin exposure toxicity hazards. Of the candidate ethers, only pentyl ether, 2-ethoxyethyl ether (diethyl carbitol), and dibutoxymethane (butylal) do not have low flash points or significant known toxicity problems.
Technical Paper

Safety Considerations for Sodium-Sulfur Batteries for Electric Vehicles

1989-08-01
891693
Safety issues and current transport (shipment and b-vehicle use) and environmental regulations applicable to sodium-sulfur batteries for electric vehicles are summarized, and an assessment technique is suggested for evaluating potential hazards relative to commonly accepted risks. It is found that shipment regulations do not directly apply to sodium-sulfur batteries. Disposal hazards need to be quantified and decommissioning procedures need to be developed to comply with the environmental regulations. The risk assessment could be used to help commercialize sodium-sulfur and other advanced batteries in electric vehicles.
X