Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

Utilizing Exploration Life Support Technology on ISS - a Bold New Approach

1998-07-13
981808
A new life support approach is proposed for use on the International Space Station (ISS). This involves advanced technologies for water recovery and air revitalization, tested at the Johnson Space Center (JSC), including bioprocessing, reverse-osmosis and distillation, low power carbon dioxide removal, non-expendable trace contaminant control, and carbon dioxide reduction.
Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere, Part 1

2000-07-10
2000-01-2432
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on applicable air-quality standards, measurements of pollutant concentrations, and crew reports of air quality. Samples of air were obtained during ingress and egress of the Zarya and Unity modules on missions 2A and 2A.1. The results from 2A suggest that trace pollutants were at safe levels and that there was good air exchange between the modules. Results from the 2A.1 flight also showed that trace pollutants were at acceptable concentrations; however, there was evidence of inadequate mixing between the modules during the hatch-open operations. Furthermore, the 2A.1 crew reported after the flight that the air quality seemed to cause symptoms during their operations in Zarya, particularly when more than one crewmember was working inside open panels for some time.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere with Emphasis on Metox Canister Regeneration

2003-07-07
2003-01-2647
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples returned from ISS on flights 8A, UF2, 9A, and 11A were analyzed for trace pollutants. On average, the air during this period of operations was safe for human respiration. However, about 3 hours into the regeneration of 2 Metox canisters in the U.S. airlock on 20 February 2002 the crew reported an intolerable odor that caused them to stop the regeneration, take refuge in the Russian segment, and scrub air in the U.S. segment for 30 hours. Analytical data from grab samples taken during the incident showed that the pollutants released were characteristic of nominal air pollutants, but were present in much higher concentrations.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere from Mission 5A to 8A

2002-07-15
2002-01-2299
There are many sources of air pollution that can threaten air quality during space missions. The International Space Station (ISS) is an extremely complex platform that depends on a multi-tiered strategy to control the risk of excessive air pollution. During the seven missions surveyed by this report, the ISS atmosphere was in a safe, steady-state condition; however, there were minor loads added as new modules were attached. There was a series of leaks of octafluoropropane, which is not directly toxic to humans, but did cause changes in air purification operations that disrupted the steady state condition. In addition, off-nominal regeneration of metal oxide canisters used during extravehicular activity caused a serious pollution incident.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

The Impact of Trace Contaminants on the Shuttle Orbiter Regenerative CO2 Removal System

1995-07-01
951540
There is a possibility that trace contaminants in the Shuttle Orbiter cabin atmosphere may chemically react with amine beads found in the Regenerative Carbon Dioxide Removal System and degrade system performance. Two contaminant compounds were exposed to the amine beads, and performance changes were measured. Acetone was tested because it is sometimes found in small but appreciable quantities in the cabin, and it has chemical properties that make it a potential poison. Halon 1301 was tested because it is the fire extinguishant, and a discharge of a Halon canister would trigger high concentrations in the cabin. Acetone was shown to be weakly and reversibly adsorbed. It does not poison the bed, and the RCRS was shown to remove small quantities of acetone. Halon was shown to be inert to the amine. It does not poison the RCRS, and is not removed by the RCRS.
Technical Paper

The Effects of Occupant and Vehicular Parameters on the Onset and Severity of Whiplash Associated Disorder from Low Speed Rear-End Collisions

2002-03-04
2002-01-0538
The effects of Whiplash Associated Disorder (WAD) from low speed rear-end collisions (REC) have been reported in the medical, scientific and engineering literature for several decades. Given the method of analysis, results have varied regarding the nature, onset and severity of spinal injury. While previously conducted laboratory crash tests have advanced the understanding of occupant dynamics from RECs, concern over investigative methodology and experimental artificiality remains. The purpose of this study is to determine if any relationship existed between specific occupant characteristics, vehicular acceleration and the onset and severity of WAD. Ninety-five subjects involved in real world RECs are selected from an active database. Data is collected over an 18-month period. Fifty-nine subjects are females and 70% of the subjects are drivers.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Test Results of Improved Spacesuit Shielding Components

2003-07-07
2003-01-2330
Prior studies have been performed where basic fabric lay-ups of the current Shuttle spacesuit were tested for radiation shielding capabilities. It was found that the fabric portions of the suit give far less protection from radiation than previously estimated. This is due to the porosity and non-uniformity of the fabrics and LCVG components. These findings were incorporated into the spacesuit model developed at NASA Langley Research Center to estimate exposures for mission planning and evaluation of safety during radiation field disturbance. Overall material transmission properties were also less than optimal. In order to evaluate the radiation protection characteristics of some proposed new spacesuit materials, fifteen test target combinations of current baseline and new proposed spacesuit materials were exposed to a low-energy proton beam at Lawrence Berkeley National Laboratory. Each target combination contained all of the necessary spacesuit layers, i.e.
X