Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

1999-03-01
1999-01-0976
This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
Technical Paper

Transient Spray Characteristics of a Direct-Injection Spark-Ignited Fuel Injector

1997-02-24
970629
This paper describes the transient spray characteristics of a high pressure, single fluid injector, intended for use in a direct-injection spark-ignited (DISI) engine. The injector was a single hole, pintle type injector and was electronically controlled. A variety of measurement diagnostics, including full-field imaging and line-of-sight diffraction based particle sizing were employed for spray characterization. Transient patternator measurements were also performed to obtain temporally resolved average mass flux distributions. Particle size and obscuration measurements were performed at three locations in the spray and at three injection pressures: 3.45 MPa (500 psi), 4.83 Mpa (700 psi), and 6.21 MPa (900 psi). Results of the spray imaging experiments indicated that the spray shapes varied with time after the start of injection and contained a leading mass, or slug along the center line of the spray.
Technical Paper

The Psychological and Statistical Design Method for Co-Creation HMI Applications in the Chinese Automotive Market

2017-03-28
2017-01-0650
The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
Technical Paper

The Evolution of Electronic Engine Diagnostics

1990-10-01
901158
Software systems on electronically controlled diesel truck engines typically provide diagnostic features to enable the engine mechanic to identify and debug system problems. As future systems become more sophisticated, so will the diagnostic requirements. The advantages of serviceability and accuracy found in todays electronic systems must not be allowed to degrade due to this increased sophistication. One method of maintaining a high level of serviceability and accuracy is to place an even greater priority on diagnostics and servicing in the initial design phase of the product than is done today. In particular, three major goals of future diagnostic systems should be separation of component failures from system failures, prognostication of failures and analysis of engine performance. This paper will discuss a system to realize these goals by dividing the diagnostic task into the Electronic System Diagnostics, Engine System Diagnostics and the Diagnostic Interface.
Technical Paper

The Effects of Mixture Stratification on Combustion in a Constant-Volume Combustion Vessel

1998-02-01
980159
The role of mixture stratification on combustion rate has been investigated in a constant volume combustion vessel in which mixtures of different equivalence ratios can be added in a spatially and temporally controlled fashion. The experiments were performed in a regime of low fluid motion to avoid the complicating effects of turbulence generated by the injection of different masses of fluid. Different mixture combinations were investigated while maintaining a constant overall equivalence ratio and initial pressure. The results indicate that the highest combustion rate for an overall lean mixture is obtained when all of the fuel is contained in a stoichiometric mixture in the vicinity of the ignition source. This is the result of the high burning velocity of these mixtures, and the complete oxidation which releases the full chemical energy.
Technical Paper

The Effect of Mounting Structure Stiffness on Mounting System Isolation Performance on Off-Highway Machines

2015-06-15
2015-01-2350
Off-highway machine mounting system isolation, especially the cab mounting system, significantly affects the operator comfort by providing damping to the harsh inputs and isolating the structure-borne energy from traveling into the cab. Mounting system isolation performance is decided not only by the isolation component, but also the mounting bracket structure, and should be treated as a system. This paper gives a review of how the mounting system isolates structural energy and the effect of the bracket structure stiffness to the mounting system isolation performance.
Technical Paper

The Development of Vehicular Powertrain System Modeling Methodologies: Philosphy and Implementation

1997-02-24
971089
Simulation is a useful tool which can significantly reduce resources invested during product development. Vehicle manufacturers are using simulations to aid in the evaluation of designs and components, including powertrain systems and controllers. These simulations can be made more useful by addressing issues such as flexibility, modularity, and causality. These issues and other aspects involved in the development and use of powertrain system simulations are discussed in this paper, and a case study of a powertrain system model developed in the PCRL using methodologies based on considerations of such issues is presented.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
Technical Paper

Simplified Engine Combustion Diagnostics Using “Synthetic” Variables

2000-03-06
2000-01-0364
This paper presents a diagnostics methodology that has applications to internal combustion engines as well as other dynamic devices. Included is an overview of the theoretical foundation of the approach, discussions on its application to internal combustion engine diagnostics, and experimental engine data showing the application of this methodology. Also included are the recent developments addressing issues of the effect of motoring compression and expansion work on crankshaft speed fluctuations and the resulting torque estimation. The methodology consists of a hard-wired nonlinear to linear transformation of engine variables that allow all subsequent diagnostics and control calculations to use linear mathematics, which significantly simplifies the size and complexity of the engine control and diagnostics strategy and code.
Technical Paper

Shortcuts in Cumulative Damage Analysis

1973-02-01
730565
The paper presents a method for shorter evaluation of the fatigue damage done by an irregular sequence of loads. The method looks first for the largest overall range from highest peak to lowest valley, then for the next largest overall range that interrupts the first range, and so on, down until a suitable fraction (for example, 10%) of all reversals have been used. These few reversals form a short history, which will do substantially the same damage as the total history. The process is applied to three long histories selected by the SAE Fatigue Design and Evaluation Committee. The sensitivity of calculated damage to the omission of smaller ranges is computed for plain and for notched specimens. The error is compared with differences produced by different current rules for evaluating damage, by different cycle counting methods, and by smooth specimen simulation of notched parts.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Technical Paper

Regenerative Testing of Hydraulic Pump/Motor Systems

1994-09-01
941750
Regenerative testing methods can be used to allow the testing of hydraulic pumps and motors at significantly higher power and flow levels than that of the power supply used. This method can also increase the accuracy of system efficiency measurements. The increase in accuracy is realized because only the power added to compensate for the system losses needs to be measured with great accuracy. Typically, for the operation points of interest this will be a much smaller quantity than the overall power of the system. Knowing that the error in flow measurements is a function of the quantity measured, the benefit of measuring the losses becomes clear. An additional, distinct advantage of regenerative testing is that no dynamometer or load is needed. This results in a much simpler test setup. This paper documents the development of such a test program at the University of Wisconsin-Madison.
Technical Paper

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

2024-04-09
2024-01-1980
The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
Technical Paper

Predictions of Cumulative Fatigue Damage Using Condensed Load Histories

1975-02-01
750045
This paper presents predictions of fatigue crack initiation life for three distinctly different, irregular load histories, each applied to keyhole-notched compact tension specimens at several maximum load levels and using two different structural steels. Work leading to this paper was done in conjunction with the cooperative research program of the SAE Fatigue Design and Evaluation Committee. Three computerized prediction methods (Landgraf, Wetzel, and a Nominal Stress Range approach) are used. All predictions are based on load histories condensed to 10% of their original number of reversals by the “Racetrack Method.” This method, which is described in detail, selects the most damaging overall ranges in an irregular load history while preserving the sequence of the original loading. Predictions are compared with test data for the two dozen combinations of loading type and level and steel used. Comments are made on the relative merits of the different prediction methods.
Technical Paper

Powertrain Simulation of the M1A1 Abrams Using Modular Model Components

1998-02-23
980926
Powertrain simulation is becoming an increasingly valuable tool to evaluate new technologies proposed for future military vehicles. The powertrain of the M1A1 Abrams tank is currently being modeled in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison. This powertrain model is to be integrated with other component models in an effort to produce a high fidelity simulation of the entire vehicle.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

2004-09-27
2004-32-0005
Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
Technical Paper

Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970884
A numerical study of air-fuel mixing in a direct-injection spark-ignition engine was carried out. In this paper, the numerical models are described and grid generation methods to represent a realistic port-valve-chamber geometry is discussed. To model a vaporizing hollow-cone spray resulting from an automotive pressure-swirl injector, a newly developed sheet spray atomization model was used to compute the processes of disintegration of the liquid sheet and breakup of the subsequent drops. Computations were performed of a particular 4-valve pent-roof engine configuration in which the intake process and an early fuel injection scheme were considered. After an analysis of the intake-generated flow structures in this engine configuration, the spray behavior and the spatial and temporal evolution of fuel liquid and vapor phases are characterized.
Technical Paper

Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays

1997-10-01
972882
In multidimensional modeling, fuels have been represented predominantly by single components, such as octane for gasoline. Several bicomponent studies have been performed, but these are still limited in their ability to represent real fuels, which are blends of as many as 300 components. This study outlines a method by which the fuel composition is represented by a distribution function of the fuel molecular weight. This allows a much wider range of compositions to be modeled, and only requires including two additional “species” besides the fuel, namely the mean and second moment of the distribution. This approach has been previously presented but is applied here to multidimensional calculations. Results are presented for single component droplet vaporization for comparison with single component fuel predictions, as well as results for a multicomponent gasoline and a diesel droplet.
X