Refine Your Search

Topic

Author

Search Results

Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Turbulent Flame Speed Closure Model: Further Development and Implementation for 3-D Simulation of Combustion in SI Engine

1998-10-19
982613
A Turbulent Flame Speed Closure Model is modified and implemented into the FIRE code for use in 3D computations of combustion in an SI-engine. The modifications are done to account for mixture inhomogeneity, and mixture compression through the dependency of local equivalence ratio, pressure and temperature on the chemical time scale and a global reaction time scale. The model is also subjected to further evaluation against experimental data, covering different mixture and turbulence conditions. The combustion process in a 4-valve pentroof combustion chamber is simulated and heat release rates and spatial flame distribution are evaluated against experimental data. The computations show good agreement with the experiments. The model has proven to be a robust and time effective simulation tool with good predictive ability.
Journal Article

Time and Spatially Resolved Temperature Measurements of a Combusting Diesel Spray Impinging on a Wall

2008-06-23
2008-01-1608
The interaction between a combusting diesel spray and a wall was studied by measuring the spray flame temperature time and spatially resolved. The influence of injection sequences, injection pressure and gas conditions on the heat transfer between the combusting spray and the wall was investigated by measuring the flame temperature during the complete injection event. The flame temperature was measured by an emission based optical method and determined by comparing the relative emission intensities from the soot in the flame at two wavelength intervals. The measurements were done by employing a monochromatic and non intensified high speed camera, an array of mirrors, interference filters and a beam splitter. The studies were carried out in the Chalmers High Pressure High Temperature (HP/HT) spray rig at conditions similar to those prevailing in a direct injected diesel engine prior to the injection of fuel.
Technical Paper

The Effect of Knock on the Heat Transfer in an SI Engine: Thermal Boundary Layer Investigation using CARS Temperature Measurements and Heat Flux Measurements

2000-10-16
2000-01-2831
It is generally accepted that knocking combustion influences the heat transfer in SI engines. However, the effects of heat transfer on the onset of knock is still not clear due to lack of experimental data of the thermal boundary layer close to the combustion chamber wall. This paper presents measurements of the temperature in the thermal boundary layer under knocking and non-knocking conditions. The temperature was measured using dual-broadband rotational Coherent anti-Stokes Raman Spectroscopy (CARS). Simultaneous time-resolved measurements of the cylinder pressure, at three different locations, and the heat flux to the wall were carried out. Optical access to the region near the combustion chamber wall was achieved by using a horseshoe-shaped combustion chamber with windows installed in the rectangular part of the chamber. This arrangement made CARS temperature measurements close to the wall possible and results are presented in the range 0.1-5 mm from the wall.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

2002-03-04
2002-01-0238
Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
Technical Paper

Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM

2015-09-06
2015-24-2400
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
Technical Paper

Simplifications Applied to Simulation of Turbulence Induced by a Side View Mirror of a Full-Scale Truck Using DES

2018-04-03
2018-01-0708
In this paper, the turbulent flow induced by a production side-view mirror assembled on a full-scale production truck is simulated using a compressible k-ω SST detached eddy simulation (DES) approach -- the improved delayed DES (IDDES). The truck configuration consists of a compartment and a trailer. Due to the large size and geometric complexity of the configuration, some simplifications are applied to the simulation. A purpose of this work is to investigate whether the simplifications are suitable to obtain the reasonable properties of the flow near the side-view mirror. Another objective is to study the aerodynamic performances of the mirror. The configuration is simplified regarding two treatments. The first treatment is to retain the key exterior components of the truck body while removing the small gaps and structures. Furthermore, the trailer is shaped in an apex-truncated square pyramid.
Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

2009-11-02
2009-01-2813
Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Technical Paper

Rear-End Collisions - A Study of the Influence of Backrest Properties on Head-Neck Motion using a New Dummy Neck

1993-03-01
930343
Neck injuries in rear-end collisions are usually caused by a swift extension-flexion motion of the neck and mostly occur at low impact velocities (typically less than 20 km/h). Although the injuries are classified as AIS 1, they often lead to permanent disability. The injury risk varies a great deal between different car models. Epidemiological studies show that the effectiveness of passenger-car head-restraints in rear-end collisions generally remains poor. Rear-end collisions were simulated on a crash-sled by means of a Hybrid III dummy with a new neck (Rear Impact Dummy-neck). Seats were chosen from production car models. Differences in head-neck kinematics and kinetics between the different seats were observed at velocity changes of 5 and 12.5 km/h. Comparisons were made with an unmodified Hybrid III. The results show that the head-neck motion is influenced by the stiffness and elasticity of the backrest as well as by the properties of the head-restraint.
Technical Paper

Performance of a Heavy Duty DME Engine - The Influence of Methanol and Water in the Fuel

2008-04-14
2008-01-1391
In the study reported here the combustion and emission characteristics of a heavy duty six-cylinder diesel engine fuelled with dimethyl ether (DME) of chemical grade and DME with small and varying amounts of methanol and/or water were experimentally investigated. In addition, the size distribution of emitted particles and selected unregulated emissions were sampled. Methanol and water additions had a very limited effect on emissions, but affected the combustion processes in a way that accentuated the premixed combustion and thus caused more energy to be released early in the cycle. At high load, however, the effect was reversed, due to the lack of distinct premixed combustion. The results confirm that DME combustion does not generate any accumulation mode particles. The particles that are detected are smaller than the soot size range and do not occur in greater numbers than those from a diesel engine in the corresponding size range.
Technical Paper

Oxidation of Hydrocarbons Released from Piston Crevices of S.I. Engines

1995-10-01
952539
This work presents a numerical method for predictions of HC oxidation in the cold turbulent wall jet emerging from the piston top land crevice in an S.I. engine, using a complex chemical reaction model. The method has been applied to an engine model geometry with the aim to predict the HC oxidation rate under engine - relevant conditions. According to the simulation a large amount of HC survives oxidation due to the long ignition delay of the wall jet emitted from the crevice. This ignition delay, in turn depends mainly on chemical composition and temperature of the gas mixture in the crevice and also on the temperature distribution in the cylinder boundary layer.
Technical Paper

Optical Diagnostics of Spray Characteristics and Soot Volume Fractions of n-Butanol, n-Octanol, Diesel, and Hydrotreated Vegetable Oil Blends in a Constant Volume Combustion Chamber

2019-01-15
2019-01-0019
The effects of using n-butanol, n-octanol, fossil Diesel, hydrotreated vegetable oil (HVO), and blends of these fuels on spray penetration, flame and soot characteristics were investigated in a high-pressure high-temperature constant volume combustion chamber designed to mimic a heavy duty Diesel engine. Backlight illumination was used to capture liquid and vapor phase spray images with a high-speed camera. The flame lift-off length (LOL) and ignition delay were determined by analyzing OH* chemiluminescence images. Laser extinction diagnostics were used to measure the spatially and temporally resolved soot volume fraction. The spray experiments were performed by injecting fuels under non-combusting (623 K) and combusting (823 K) conditions at a fixed ambient air density of 26 kg/m3. A Scania 0.19 mm single straight hole injector and Scania XPI common rail fuel supply system were used to produce injection pressures of 120 MPa and 180 MPa.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Numerical Evaluation of Direct Injection of Urea as NOx Reduction Method for Heavy Duty Diesel Engines

2007-04-16
2007-01-0909
The effect of ammoniac deoxidizing agent (Urea) on the reduction of NOx produced in the Diesel engine was investigated numerically. Urea desolved in water was directly injected into the engine cylinder during the expansion stroke. The NOx deoxidizing process was described using a simplified chemical kinetic model coupled with the comprehensive kinetics of Diesel oil surrogate combustion. If the technology of DWI (Direct Water Injection) with the later injection timing is supposed to be used, the deoxidizing reactants could be delivered in a controlled amount directly into the flame plume zones, where NOx are forming. Numerical simulations for the Isotta Fraschini DI Diesel engine are carried out using the KIVA-3V code, modified to account for the “co-fuel” injection and reaction with combustion products. The results showed that the amount of NOx could be substantially reduced up to 80% with the injection timing and the fraction of Urea in the solution optimized.
Technical Paper

Modeling n-dodecane Spray Combustion with a Representative Interactive Linear Eddy Model

2017-03-28
2017-01-0571
Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Large-Scale CFD Approach for Spray Combustion Modelling in Compression-Ignited Engines

2005-09-11
2005-24-052
Computational simulations of the spray combustion and emissions formation processes in a heavy-duty DI diesel engine and in a small-bore DI diesel engine with a complicated injection schedule were performed by using the modified KIVA3V, rel. 2 code. Some initial parameter sets varying engine operating conditions, such as injection pressure, injector nozzle diameter, EGR load, were examined in order to evaluate their effects on the engine performance. Full-scale combustion chamber representations on 360-deg, Cartesian and polar, multiblock meshes with a different number of sprays have been used in the modelling unlike the conventional approach based on polar sector meshes covering the region around one fuel spray. The spray combustion phenomena were simulated using the detailed chemical mechanism for diesel fuel surrogate (69 species and 306 reactions).
Technical Paper

It's in the Eye of the Beholder: Who Should be the User of Computer Manikin Tools?

2003-06-17
2003-01-2196
The aim of this study was to examine the influence of computer manikin users' background and knowledge for the results of a computer manikin simulation. Subjects taking part in the study were either production engineers or ergonomists. A manual task that presented production and ergonomics problems was used. The task was simulated prior to the subjects' sessions, using the computer manikin software Jack. During the sessions, the animated simulation was shown to the test subject. Results show that there are differences in how production engineers and ergonomists interpret results from a manikin simulation. Depending on the user's background, certain aspects that are difficult to visualise with the computer manikin were interpreted differently, regarding e.g. detected problems and holistic perspectives.
X