Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Resolving EGR Distribution and Mixing

2002-10-21
2002-01-2882
A minimally invasive spatially resolved capillary inlet mass spectrometer has been used to quantify EGR/air mixing in a Cummins V-8 medium-duty diesel engine. Two EGR-system hardware designs were evaluated in terms of EGR-air mixing at the intake manifold inlet and port-to-port EGR charge uniformity. Performance was assessed at four modalized-FTP engine conditions. One design is found to be considerably better, particularly at three of the four engine conditions. Specific questions such as the effect of maximizing mass air flow on EGR mixing, and if particular cylinders are EGR starved are investigated. The detailed performance characteristics suggest areas to focus improvement efforts, and serve as a foundation for identifying the non-uniformity EGR barriers and origins.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

2008-04-14
2008-01-0386
This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

Modeling and Control of a Urea-SCR Aftertreatment System

2005-04-11
2005-01-0966
A dynamic system model for simulating the transient performance of a NOx aftertreatment system using Selective Catalytic Reduction with urea as a reductant (urea-SCR) was developed, calibrated for a heavy-duty engine application, and used to develop a closed loop self-tuning control strategy. The closed loop controller was able to reduce the FTP cycle NOx emissions from a Cummins heavy-duty engine by 84% while maintaining the mean ammonia slip below 7 ppm and the peak ammonia slip below 55 ppm. The peak ammonia slip occurred during the LA Freeway phase of the FTP cycle. Components of the urea-SCR aftertreatment system model include a urea dosing system, an exhaust pipe and a fresh vanadia-based SCR catalyst. The urea dosing system model incorporates the evaporation, thermolysis and hydrolysis stages in the conversion of urea to ammonia in the exhaust pipe and on the catalyst.
Journal Article

Model Predictive Control: A Unified Approach for Urea-Based SCR Systems

2010-04-12
2010-01-1184
Despite the fact that urea-based selective catalytic reduction (SCR) of NOx is a key technology for achieving on- and off-highway diesel emission standards, significant control challenges remain. Transient operation, combined with dramatic changes in catalyst dynamics over the operating range, cause highly nonlinear system behavior. Moreover, these effects depend on catalyst formulation and new catalysts continue to be developed. With many controllers, any difference in catalyst formulation, converter size, and engine emissions calibration require control system re-tuning. To minimize control development effort, this paper presents a novel “generic” controller for SCR systems. Control action is grounded in a physics-based, nonlinear, embedded model. Through the model, controller parameters are adjusted a priori for catalyst formulation and converter size. The few remaining tuning levers are quite intuitive, and require no special knowledge of controls theory.
Journal Article

Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation

2010-04-12
2010-01-0883
Selective catalytic reduction (SCR) of NOx is coming into worldwide use for automotive diesel emissions control. To meet the most stringent standards, NOx conversion efficiency must exceed 80% while NH3 emissions or slip must be kept below 10-30 ppm. At such high levels of performance, non-uniformities in ammonia-to-NOx ratio (ANR) at the converter inlet can limit the achievable NOx reduction. Despite its significance, this effect is frequently ignored in 1D catalyst models. The corresponding model error is important to system integration engineers because it affects system sizing, and to control engineers because it affects both steady-state and dynamic SCR converter performance. A probability distribution function (PDF) based method is introduced to include mixture non-uniformity in a 1D, real-time catalyst model.
Journal Article

Heat Transfer Analysis of an Electric Motor Cooled by a Large Number of Oil Sprays Using Computational Fluid Dynamics

2022-03-29
2022-01-0208
This paper reports on an analytical study of the heat transfer and fluid flow in an electric vehicle e-Motor cooled by twenty five sprays/jets of oil. A three-dimensional, quasi-steady state, multi-phase, computational fluid dynamics (CFD) and conjugate heat transfer (CHT) model was created using a commercial CFD software. The transport equations of mass, momentum, energy and volume fraction were solved together with models for turbulence and wall treatment. An explicit formulation of the volume of fluid (VOF) technique was used to simulate the sprays, a time-implicit formulation was used for the flow-field and three dimensional conduction heat transfer with non-isotropic thermal conductivities was used to simulate the heat transfer in the windings.
Technical Paper

Effect of Biodiesel Blends on Urea Selective Catalytic Reduction Catalyst Performance with a Medium-Duty Engine

2008-10-06
2008-01-2484
Testing to investigate biodiesel's impact on the performance of a zeolite-based selective catalytic reduction (SCR) system was conducted. The tests employed a 2004 compliant Cummins ISB with common rail fuel injection, EGR, and variable geometry turbo. This 5.9L, 300HP engine was retrofitted with a Johnson-Matthey DPF + SCR (SCRT™) system. Testing was conducted over eight steady-state engine operating modes which provided a wide range of exhaust temperature and exhaust chemistry conditions. Fuels tested were a 2007 certification quality ultra-low sulfur diesel (ULSD), as well as a soy derived biodiesel in a B20 blend. B20 produced slightly lower catalyst temperatures and higher NO2:NOx ratios relative to ULSD, but no measureable difference in the overall NOx conversion over the SCR system. The dominant variable influencing SCR performance is the catalyst space velocity, which is unchanged with the use of B20.
Technical Paper

Effect of Biodiesel Blends on Diesel Particulate Filter Performance

2006-10-16
2006-01-3280
Tests of ultra-low sulfur diesel blended with soy-biodiesel at 5% and 20% were conducted using a 2002 model year Cummins ISB engine (with exhaust gas recirculation) that had been retrofitted with a passively regenerated catalyzed diesel particulate filter (DPF). Results show that on average, the DPF balance point temperature (BPT) is 45°C and 112°C lower for B20 blends and neat biodiesel, respectively, than for 2007 certification diesel fuel. Biodiesel causes a measurable increase in regeneration rate at a fixed steady-state condition, even at the 5% blending level. The data show no significant differences in NOx emissions for these fuels at the steady-state regeneration conditions, suggesting that differences in soot reactivity are responsible for the observed differences in BPT and regeneration rate.
Technical Paper

Diesel Exhaust Emissions Control for Light Duty Vehicles

2003-03-03
2003-01-0041
The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented.
Technical Paper

Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

2002-06-03
2002-01-1867
Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel.
Technical Paper

Biodiesel Impact on Wear Protection of Engine Oils

2007-10-29
2007-01-4141
Pure biodiesel fuel (B100) is typically made of fatty acid methyl esters (FAME). FAME has different physical properties as compared to mineral diesel such as higher surface tension, lower volatility and higher specific gravity. These differences lead to a larger droplet size and thus more wall impingement of the fuel during injection in the combustion chamber. This results in higher levels of fuel dilution as the oil is scraped down into the crankcase by the scraper ring. The lower volatility also makes biodiesel more difficult to evaporate once it enters the crankcase. For these reasons, levels of fuel dilution in biodiesel fueled engines are likely to be higher compared to mineral diesel fueled engines. When in-cylinder dosing is applied to raise the exhaust temperature required for the regeneration of Diesel Particulate Filters (DPF's), biodiesel dilution in the engine oil may be elevated to high levels.
Technical Paper

A Study of Lean NOx Technology for Diesel Emission Control

2002-03-04
2002-01-0956
The aim of this paper is to investigate the potential of Lean NOx technology for diesel emission control. In this work, the focus is on the precious metal (low temperature) catalyst. Engelhard optimized the catalyst for cells per square inch (cpsi) and Platinum loading. Effect of various parameters, including, reductant type, catalyst volume, space velocity range and injector locations were investigated both analytically and experimentally at Cummins in search for the optimum system design. Both steady state and transient tests were conducted in this work. The precious metal catalysts have a narrow temperature window, however, with the use of proper reductant and an efficient control strategy (to minimize fuel penalty) cycle conversion efficiencies as high as 40% may be obtained for FTP-75. The analysis tool developed to aid the system design is capable of predicting effects of catalyst temperature, NOx concentration, O2 concentration, space velocity etc. on NOx conversion efficiency.
Technical Paper

A Lumped-Parameter Thermal Model for System Level Simulations of Hybrid Vehicles

2020-04-14
2020-01-0150
A lumped-parameter thermal network model, based on the analogy between heat transfer and electric current flow, is presented for hybrid powertrain cooling systems. In order to optimally select the powertrain components that are commercially viable and meet performance, emission, fuel economy and life targets, it is necessary to consider the influence of cooling architecture. Especially in electric and hybrid vehicles, temperature monitoring is important to increase power and torque utilization while preventing thermal damages. Detailed thermal models such as FEA and CFD are considered for component level assessments as they can locate thermal hotspots and identify possible design changes needed. However, for the system level analysis, the detailed numerical models are not suitable due to the requirement of high computation effort.
Technical Paper

A High Power Density, Commercially Based, Diesel Engine for FCS Vehicles

2005-04-11
2005-01-1547
This paper outlines the process by which a current production commercial diesel engine was modified for high performance military use. Salient among the needs for military use are a compact package and high power output. The compact engine package was addressed by the selection of a base engine of relatively small displacement and slim inline configuration. The air system, fuel pump, and other ancillary components were re-packaged close to the engine. A high engine power output was achieved by turbocharging at the pressure ratios achievable by current production turbochargers, increased engine speed, and upgrades in the design of engine components. Close attention was paid to thermal and mechanical loading of all components of the engine. Most components in the engine were changed to accommodate these loadings and packaging needs.
X