Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Vehicle Road Simulation Testing, Correlation and Variability

2005-04-11
2005-01-0856
In this paper, responses from a vehicle's suspension, chassis and body, are used to demonstrate a methodology to optimize physical test results. It is well known that there is a variability effect due to an increase of wheel unsprung mass (due to loads measurement fixturing), tire pressure, speed, etc. This paper quantifies loading variability due to Wheel Force Transducer (WFT) unsprung mass by using a rainflow cycle counting domain. Also, presents a proving ground-to-test correlation study and the data reduction techniques that are used in road simulation test development to identify the most nominal road load measurement. Fundamental technical information and analytical methodology useful in overall vehicle durability testing are discussed. Durability testing in a laboratory is designed to correlate fatigue damage rig to road. A Proving Ground (PG) loading history is often acquired by running an instrumented vehicle over one or more PG events with various drivers.
Technical Paper

Vehicle Powertrain Loading Simulation and Variability

2004-03-08
2004-01-1563
In this paper, loads acting on driveline components during an entire proving ground (PG) durability schedule are used to demonstrate the methodology of optimizing driveline performance reliability using both physical and computational methods. It is well known that there is an effect of driver variability on the driveline component loads. Yet, this effect has not been quantified in the past for lack of experimental data from multiple drivers and reliable data analysis methods. This paper presents the data reduction techniques that are used to identify the extreme driver performance and to extrapolate the short-term measurement to long-term data for driveline performance reliability. The driveline loading variability is made evident in the rotating moment histogram domain. This paper also introduces the concept for a simulation model to predict the driveline component loads based on a complete proving grounds schedule. A model-to-test correlation is also performed in this paper.
Technical Paper

Torque Converter CFD Engineering Part I: Torque Ratio and K Factor Improvement Through Stator Modifications

2002-03-04
2002-01-0883
To improve vehicle launch feeling, the powertrain torque output needs to be largely increased. Compared with modifications to engine, transmission, and axle, one of the most inexpensive ways of achieving this goal is to modify the torque converter to get a higher stall torque ratio. In other applications, in order to lower engine speed for better fuel economy, and to match with a higher output engine, a converter with higher torque capacity (lower K factor) is also often desired. In some case of small-volume production, the torque converter modifications are limited to the stator only in order to reduce the manufacturing cost. In the present study, the engineering CFD simulations were used to develop new stators for stall torque ratio and K factor improvement. The flow fields of both baseline and modified torque converters were simulated. The overall performances of the converter were calculated from the flow field data, and correlated with the dyno test data.
Technical Paper

Tools for Occupant Protection Analysis

2001-11-12
2001-01-2725
The design of occupant restraint systems in the automotive industry has shifted from an empirical approach to a computer aided analysis approach for many years now. Various finite element software programs have been applied in crash safety analysis, and multi-body dynamics codes have been successfully used where quick system response times were required. Most new vehicle programs are analyzed by the use of finite element tools that were used for previous program projects. Software that has specific occupant protection features may be coupled with these finite element tools, or new vehicle programs may be developed from scratch by using one tool that does all, i.e. a tool where the multi-body dynamics are integrated into the finite element method. Both these approaches will be elaborated as valid tools for occupant protection analysis. At first, the coupling between the finite element crash program LS-DYNA and the F.E.
Technical Paper

Subjective Evaluation of NVH CAE Model Predictions Using an Operator-in-the-Loop Driving Simulator

2001-04-30
2001-01-1590
In the past several years there has been a significant effort to increase the reliance on CAE technology to guide the vehicle design process, with the accompanying effort to reduce or eliminate vehicle prototype testing during the early design phase. Since little or no representative hardware is available early in the design, a tool is needed which allows NVH Development Engineers to subjectively experience the results of NVH CAE model predictions in a realistic driving environment. This paper documents the development of a high fidelity NVH simulator, including both audio and vibration, and the integration of this simulator into an “operator-in-the-loop” Driving Simulator. The key development of this system is its ability to incorporate NVH CAE predictions into the simulated driving environment.
Technical Paper

Springback of Sheet Metal Subjected to Multiple Bending-Unbending Cycles

2000-03-06
2000-01-1112
A Draw Bead Simulator (DBS), with modified draw beads, was employed in this study to understand the springback behavior of sheet metal subjected to multiple bending-unbending cycles. The investigations were carried out in both the rolling and the transverse rolling directions on four types of materials: Electro-Galvanized DQ steel, light and heavy gauge Hot-Dip Galvanealed High Strength Steels, and Aluminum alloy AL6111. The sheet geometries, thickness strains, pulling forces and clamping forces were measured and analyzed for the purpose of establishing a benchmark database for numerical predictions of springback. The results indicate that the springback curvature changes dramatically with the die holding force. The conditions at which the springback is minimized was observed and found to depend on the material properties and the sheet thickness. Analysis with an implicit FEM showed that the predicted and the experimental results are in very good agreement.
Technical Paper

Reliability-Based Fatigue Strength Testing by the Staircase Method

2004-03-08
2004-01-1288
The staircase fatigue testing method is a recognized method for determining the fatigue limit of powertrain components. The purpose of this paper is to improve upon existing standards by adding common practices that will ensure a higher degree of statistical accuracy in the data. This includes specifying appropriate sample sizes, stress increments and initial load conditions, as well as making suggestions for appropriate methods of analyzing the data. Two methods (Dixon and Mood method and probit analysis method) are selected and compared in terms of relative percent difference on four parameters (mean, standard deviation, B10 fatigue strength and B50 fatigue strength). The staircase data are obtained by simulations from normal and lognormal fatigue limit distributions.
Technical Paper

Prediction of Draw Bead Coefficient of Friction Using Surface Temperature

2002-03-04
2002-01-1059
Sheet metal stamping involves a system of complex tribological (friction, lubrication, and wear), heat transfer, and material strain interactions. Accurate coefficient of friction, strain, and lubrication regime data is required to allow proper modeling of the various sheet stamping processes. In addition, non-intrusive means of monitoring the coefficient of friction in production stamping operations would be of assistance for efficiently maintaining proper stamping quality and to indicate when adjustments to the various stamping parameters, including maintenance, would be advantageous. One of the key sub-systems of the sheet metal stamping process is the draw bead. This paper presents an investigation of the tribology of the draw bead using a Draw Bead Simulator (DBS) Machine and automotive zinc-coated sheet steels. The investigation and findings include: 1) A new, non-intrusive method of measuring the surface temperature of the sheet steel as it passes through the draw bead.
Technical Paper

Numerical Design of Racecar Suspension Parameters

1999-04-26
1999-01-2257
Even with the rapidly evolving computational tools available today, suspension design remains very much a black art. This is especially true with respect to road cars because there are so many competing design objectives. In a racecar some of these objectives may be neglected. Even still, just concentrating on maximizing road-holding capability remains a formidable task. This paper outlines a procedure for establishing suspension parameters, and includes a computational example that entails spring, damper, and anti-roll bar specification. The procedure is unique in that it not only covers the prerequisite vehicle dynamic equations, but also outlines the process that sequences the design evolution. The racecar design covered in the example is typical of a growing number of small open wheel formula racecars, built specifically for American autocrossing and British hillclimbs.
Technical Paper

High-Power Battery Testing Procedures and Analytical Methodologies for HEV's

2002-06-03
2002-01-1950
Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle- and calendar-life modeling for hybrid electric vehicle batteries are presented.
Technical Paper

Effect of Forming Strain on Fatigue Performance of a Mild Automotive Steel

2001-03-05
2001-01-0083
The effect of forming strains on the fatigue behavior of an automotive mild steel, interstitial free steel, was studied after being prestrained by balanced biaxial stretch and plane strain. In the long life region, higher than 5×105 reversals, prestrain improves fatigue resistance. In the short life region, prestrain reduces fatigue resistance. At even shorter fatigue lives, the detrimental effect of prestrain diminishes. For plane strains, the fatigue behavior is anisotropic. In the direction perpendicular to the major strain, the steel exhibits much better fatigue resistance than in the direction parallel to the major strain.
Technical Paper

Criteria to Determine the Necessity of Data Acquisition for RTS Drive File Development due to Vehicle Parameter Changes

2005-04-11
2005-01-0858
Durability of automotive structures is a primary engineering consideration that is required to be assessed at every design and development stage. Due to limitations of the analytical and experimental tools, the current practice in the automotive industry is to conduct a new data acquisition over a proving ground schedule whenever there are changes in the suspension parameters. This is a time-consuming and expensive operation. This paper provides guidelines for product teams to determine if a new vehicle data acquisition is needed when there are changes in vehicle parameters, and the corresponding effect on Road Test Simulator (RTS) drive file development. The application of this methodology to a truck with and without tuned suspension parameters is described in detail.
Technical Paper

Concepts Designed to Enhance the CustomerS Driving Experience

2000-11-01
2000-01-C031
Throughout its history, the automobile has served the utilitarian purpose of transportation quite well. However, until recently, vehicle occupants have had little else to do while proceeding from point "A'' to point "B.'' The phenomenal improvements in computing and communication technologies promise to evolve the driving experience. Like never before, new opportunities to make driving more efficient and engaging are becoming available. The challenge will be to develop the right combination of technology, safety, design and user interface that creates a product popular with customers.
Technical Paper

Coastdown/Wind Tunnel Drag Correlation and Uncertainty Analysis

2001-03-05
2001-01-0630
This paper describes a program of coastdown and wind tunnel tests conducted with the objective of establishing a correlation between the aerodynamic drag force measured at the Lockheed-Martin Low-Speed Wind Tunnel (LSWT) and that inferred from coastdown results on the test track. The result of this correlation establishes, in principle, the capability to project what the aerodynamic drag force inferred by a future coastdown test will be (for a future, as-yet unavailable property) based on a current database of wind tunnel results. The correlation is accompanied by a rigorous uncertainty analysis to assess the quality of the correlation and its supporting data.
Technical Paper

Calculating Partial Contribution Using Component Sensitivity Values: A Different Approach to Transfer Path Analysis

1999-05-17
1999-01-1693
Transfer Path Analysis (TPA) is a widely used methodology in Noise, Vibration and Harshness (NVH) analysis of motor vehicles. Either it is used to design a vehicle from scratch or it is applied to root cause an existing NVH problem, TPA can be a useful tool. TPA analysis is closely related to the concept of partial contribution. The very basic assumption in TPA is that the summation of all partial contributions from different paths constitutes the total response (which could be either tactile or acoustic). Another popular concept in NVH analysis of vehicles is the component sensitivity. Component sensitivity is a measure of how much the response changes due to a change in one of the components of the system, i.e., the thickness of a panel or elastic rate of an engine mount. Sensitivity rates are more popular among CAE/Simulation community, simply because they are reasonably easy to calculate using mathematical models.
Technical Paper

Advances in Thixomolding Magnesium Alloys Part II

2003-03-03
2003-01-0181
Thixomolding (1) is a relatively new process in which the metallic slurry is injected into a die cavity tool at semi-solid or liquid temperatures to form near net-shape products from the solid feedstock. As part of on-going research into Thixomolding technology, this study continues the work of a previous study, that concentrated on magnesium alloys AZ91D and AM60B. The test samples were made with high, low and zero percent fraction solid. The test results of the thixomolded samples of the various percent fraction solid are compared to conventional high pressure die casting samples and there is a discussion of the why the Thixomolding process produces superior properties. In addition, a comprehensive corrosion resistance study was completed utilizing uncoated corrosion plates in an salt spray environment (ASTM B117).
X