Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Technical Paper

Vehicle Exhaust Emissions Simulator- A Quality Control Tool to evaluate the Performance of Low Level Emission Sampling and Analytical Systems

2003-03-03
2003-01-0391
As the standards for exhaust emissions have become more stringent, the quality control tools used to evaluate the performance of low level samplers and analyzers has become more important. The Vehicle Exhaust Emissions Simulator (VEES) was developed to evaluate the performance of vehicle or engine exhaust emissions sampling and analytical systems. The simulator emulates emissions from low-emitting gasoline vehicles by producing a simulated exhaust stream containing emission constituents (HC, CO, CO2, and NOx) injected via Mass Flow Controllers (MFCs). This paper discusses various applications of the VEES as a quality control tool for ULEV and SULEV testing. A comparison is made between the injected amount of exhaust species by the VEES and the amounts recovered by the different sampling systems. Different root cause scenarios are discussed as to the source of discrepancies between the results on the CVS and BMD for different driving cycles.
Technical Paper

Vehicle E/E System Integrity From Concept to Customer

2002-10-21
2002-21-0018
The goal of an OEM electrical/electronics (E/E) platform organization is to release reliable E/E systems that achieve high levels of customer satisfaction with minimum investment and system cost. Achieving this goal is made more challenging by rapid advances in E/E technology and features which impact the vehicle development business environment. This paper discusses the evolution of an OEM platform organization striving to achieve E/E system integrity in an ever-changing world and eventually achieved the world class electrical quality as measured by J. D. Power. The organizational evolution progresses through a series of philosophies and methodologies, adapting new initiatives and enablers seeking continuous improvement. The result is an OEM organization with: knowledge based on lessons learned, an understanding of E/E system architecture, and enabled by models and tools to provide high levels of customer satisfaction.
Technical Paper

Vehicle Cradle Durability Design Development

2005-04-11
2005-01-1003
In this paper, cradle design functional objectives are briefly reviewed and a durability development process is proposed focusing on the cradle loads, stress, strain, and fatigue life analysis. Based upon the proposed design process, sample isolated and non-isolated cradle finite element (FE) models for a uni-body sport utility vehicle (SUV) under different design phases are solved and correlated with laboratory bench and proving ground tests. The correlation results show that the applied cradle models can be used to accurately predict the critical stress spots and fatigue life under various loading conditions.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Turbocharging the Chrysler 2.4L Engine

2003-03-03
2003-01-0410
A turbocharged version of the 2.4L engine has been developed by the Chrysler Group of DaimlerChrysler Corporation. This new engine is derived from the proven 2.4L 4-cylinder, with significant changes to achieve a durable, high performance package for the PT Cruiser vehicle. The package includes an integrated turbocharger / exhaust manifold, oil squirters for piston cooling, and numerous other upgrades to satisfy the demanding performance, emissions, and durability requirements unique to this powertrain. The purpose of this paper is to describe the mechanical changes to the base engine, the unique turbocharger configuration, and the new parts necessary to accommodate the higher output.
Technical Paper

Truck Frame Motion Prediction and Correlation

2006-04-03
2006-01-1257
Accurate motion prediction can be used to evaluate vibrations at seat track and steering wheel. This paper presents the prediction and correlation of truck frame motion from wheel force transducer (WFT) measurements. It is assumed that the method can be used to predict vibrations at seat track and steering wheel for unibody vehicles. Two durability events were used for calculation. WFT measurements were used as inputs applied on frame from suspension. Frame loads were then used as inputs to calculate frame motions using a FEA approach. The predicted frame motions are represented by four exhaust hangers and they are compared with measured motions of the same locations. The correlations include displacement, velocity, and acceleration. It is shown that good correlations are obtained in velocity and displacement. Acceleration shows bigger differences than velocity and displacement.
Technical Paper

Truck Body Mount Load Prediction from Wheel Force Transducer Measurements

2005-04-11
2005-01-1404
This paper introduces a reliable method to calculate body mount loads from wheel-force-transducer (WFT) measurements on framed vehicles. The method would significantly reduce time and cost in vehicle development process. The prediction method includes two parts: Hybrid Load Analysis (HLA) that has been used by DaimlerChrysler Corporation and Body Mount Load Analysis (BMLA) that is introduced by this paper for the first time. The method is validated on a body-on-frame SUV and a pickup truck through one proving ground events. The example shown in this paper is for a SUV and one of the most severe events. In HLA, the loads at suspension-to-frame attachments are calculated from spindle loads measured by WFT. In BMLA, body mount loads were calculated using outputs of HLA with detailed finite-element-modeled frame and body. The loads are compared with measured body mount loads. The comparisons are conducted in range, standard deviation (S.D.), and fatigue pseudo-damage.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Step-Stress Accelerated Test Method – A Validation Study

2003-03-03
2003-01-0470
Most products are designed to operate for a long period of time, and in such case, life testing is a relatively lengthy procedure. Lengthy tests tend to be expensive and the results become available too late to be of much use. To reduce the experimental cost significantly and provide an efficient tool to assess the life distribution for highly reliable product, a step-stress accelerated test (SSAT) was developed. An example of a rear suspension aft lateral link is used to validate the SSAT method.
Technical Paper

Stamping Simulation in Pentium PC and Linux Environment

2003-03-03
2003-01-0691
This paper describes the performance improvement and cost savings achieved by the Stamping Technology Department at DaimlerChrysler Corporation (Chrysler group), in migrating from Unix workstations with RISC technology to Linux PCs with Intel Pentium technology. Performance comparisons of various engineering applications running on these two system configurations are analyzed. The major aspects such as hardware configuration, operating system, software availability, compatibility, reliability, accuracy and consistency of simulation results are discussed. The improvement in computing speed and deviations in simulation results between MPP LS-Dyna and SMP LS-Dyna are presented.
Technical Paper

Shock Absorber Force and Velocity Sensitivity to Its Damping Characteristics

2007-04-16
2007-01-1349
In this study, a full vehicle with durability tire model established with ADAMS is applied to simulate the dynamic behavior of the vehicle under severe rough road proving ground events, where the shock force-velocity characteristics are modeled as nonlinear curves and multi-stage representations, respectively. The shock forces and velocities at each corner are resolved and through full factorial DOE, the shock forces and velocities response surface models are established to analyze the sensitivities of shock force and velocity to the shock damping characteristics.
Technical Paper

Robust Design of a Catalytic Converter with Material and Manufacturing Variations

2002-10-21
2002-01-2888
A design is robust when the performance targets have been achieved and the effects of variation have been minimized without eliminating the causes of the variation such as manufacturing tolerances, material properties, environmental temperature, humidity, operational wear etc. In recent years several robust design concepts have been introduced in an effort to obtain optimum designs and minimize the variation in the product characteristics [1,2]. In this study, a probabilistic design analysis was performed on a catalytic converter substrate in order to determine the required manufacturing tolerance that results in a robust design. Variation in circularity (roundness) and the ultimate shear stress of the substrate material were considered. The required manufacturing tolerance for a robust design with 1,2 and 3 sigma quality levels was determined. The same manufacturing tolerance for a reliability based design with reliability levels of 85%, 90% and 95% was also determined and compared.
Technical Paper

Repairable System Reliability Prediction

2004-03-08
2004-01-0457
For a vehicle or repairable system, incidents (conditions) are neither necessarily independent nor identically distributed. Therefore, traditional statistical distributions like Weibull, Normal, etc, are no longer valid to estimate reliability. The Non-homogeneous Poisson process (NHPP) model can be used to predict reliability and warranty of the field product. It can also measure the reliability improvement during the development cycle. The NHPP model is discussed in this paper. In applying a NHHP model to reliability data on a repairable system, one may have few or no failures. This paper presents the I/100 and reliability derivations when the parameter β in the ROCOF function is assumed to have a known value.
Technical Paper

Reliability Analysis of Dynamometer Loading Parameters during Vehicle Cell Testing

2007-04-16
2007-01-0600
In automotive testing, a chassis dynamometer is typically used, during cell testing, to evaluate vehicle performance by simulating actual driving conditions. The use of indoor cell testing has the advantage of running controlled tests where the cell temperature and humidity and solar loads can be well controlled. Driving conditions such as vehicle speed, wind speed and grade can be also controlled. Thus, repeated tests can be conducted with minimum test variations. The tractive effort required at the wheels of a vehicle for a given set of operating parameters is determined by taking into account a set of variables which affect vehicle performance. The forces considered in determination of the tractive effort include the constant friction force, variable friction force due to mechanical and tire friction, forces due to inertia and forces due to aerodynamic and wind effects. In addition, forces due to gravity are considered when road grades are simulated.
Technical Paper

Practical Application of DFSS with a Focus on Axiomatic Design - A Transmission Planetary Case Study

2004-03-08
2004-01-0812
The objective of this paper is to present a simple and comprehensive integrated Design for Six Sigma (DFSS) approach to design robustness. The approach is hinged on conceptual components for axiomatic design, robust design and Six Sigma. An automatic transmission planetary case study is provided as an illustration vehicle. Specifically, this paper will explore the cascading process of functional requirements to design parameters and features while providing an initial robustness assessment against the common sources of variation. A Six Sigma design quality level is pursued as an objective. The approach presented in this paper represents a stream of development to achieve excellence by improving customer satisfaction through quality enhancement efforts. It can be viewed as a process with detailed steps needed to cast a complete understanding of how to achieve desired breakthrough design improvement.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
Technical Paper

Material Property Characterization of Foilback Damping Treatments Using Modified ASTM Equations

2003-05-05
2003-01-1585
In the automotive industry, in order to characterize and evaluate damping treatments, it is a common practice to employ Oberst bar tests as specified by ASTM E756 and SAE J1637. The ASTM standard provides equations for sandwiched Oberst bars. These equations allow engineers to extract the properties of the visco-elastic core. For certain type of automotive constrained-layer damping treatments, such as the Aluminum Foilback, it is often convenient and desirable to prepare the Oberst bar samples with production-intent configuration. Unfortunately, these configurations are often asymmetric. Therefore, the composite Oberst bar data cannot be post-processed by employing the ASTM equations. In this study, the ASTM equations for sandwiched bars are modified to accommodate for asymmetric Oberst bar configurations. The finite element method is used to validate the derived equations by performing a “Virtual Oberst Bar test.”
Technical Paper

Low Temperature Impact Testing of Plastic Materials

2005-04-11
2005-01-1412
This study will analyze existing procedures and commercially available testing equipment for low temperature impact testing of plastic materials. The results of this analysis will be used to identify continuous improvement opportunities and develop recommended practices for low temperature impact testing to support ongoing efforts to meet related durability and performance needs of automotive components.
X