Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vision System Non Contact Measurement of Pintail Type Fasteners

2010-09-28
2010-01-1870
Accurately measuring the length of a pintail type fastener is limited by the process of forming the fastener. When the pintail is formed its overall length is not dimensionally controlled. To accurately measure the grip of the bolt a vision system is utilized that finds the notch between the tail and bolt shank. The grip, diameter, and angle of the bolt prior to insertion are then measured. This method proves to be more accurate than measuring the bolt mechanically and provides a number of other advantages including; decreased measurement time, improved accuracy, FOD detection, and angle of the bolt in the fingers prior to insertion.
Technical Paper

Verification of Supply Chain Quality for Perishable Tools

2007-09-17
2007-01-3813
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
Technical Paper

Use of Electromagnetic and Vacuum Forces on Aircraft Assembly

2002-10-01
2002-01-2630
Decades ago our innovative grandfathers developed the first automated riveting machines based on hard automation using kinematics and tools attached to a C-frame. The C-frame serves multiple functions: First, it holds the upper and lower tools in fixed positions relative to each other; second, it translates upper active tooling forces to the lower tool; and third, it embraces the part placed between the upper and lower tool. C-frames and newly developed yoke, ring and gantry machines, used for low level (first, second) fuselage and wing assembly are growing in size to exorbitant proportions to satisfy requirements of larger and larger structures. High costs are dictated by massive kinematics and complex controls that provide stability, precision, and process speed. All this is mainly needed because we have to carry mechanical forces around the part, from upper to lower tool along the C-frame, gantry, yoke, bridge, etc.
Technical Paper

Universal Splice Machine

2007-09-17
2007-01-3782
There is an increasing demand in the aerospace industry for automated machinery that is portable, flexible and light. This paper will focus on a joint project between BROETJE-Automation and Boeing called the Universal Splice Machine (USM). The USM is a portable, flexible and lightweight automated drilling and fastening machine for longitudinal splices. The USM is the first machine of its kind that has the ability not only to drill holes without the need to deburr, (burrless drilling) but also to insert fasteners. The Multi Function End Effector (MFEE) runs on a rail system that is mounted directly on the fuselage using a vacuum cup system. Clamp up is achieved through the use of an advanced electromagnet. A control cart follows along next to the fuselage and includes an Automated Fastener Feeding System. This paper will show how this new advancement has the capabilities to fill gaps in aircraft production that automation has never reached before.
Journal Article

Unique Non-Orthogonal TCP Intersecting AFP Axes Design

2012-09-10
2012-01-1862
Automated Fiber Placement (AFP) machines typically consist of 3 linear and 3 rotary axes of motion in order to manufacture complex shapes. These axes are generally orthogonal and semi-coupled. In these designs, a linear axis move will not affect the rotary axes orientation whereas a rotary axis move will affect the Tool Center Point (TCP) location with respect to the linear axes position. The wide range of motion required to maintain the compaction-axis normality needed for carbon fiber layup tends to prevent all of the rotational axes from passing through the TCP. The location and arrangement of these rotational axes has a great effect on the AFP machine performance and controllability during high speed layup. This paper presents a unique kinematic AFP axes design consisting of replacing the 3 orthogonal rotary axes with 3 tool-center-point-intersecting coupled-axes which decouple the linear axes from the rotary axes.
Technical Paper

The Automated NC Mini-Driller

1999-10-06
1999-01-3436
The introduction of a new derivative to an existing aircraft model poses many decisions regarding old versus new. In the case of the introduction of the extended range 767 (the 767-400ER), an entirely new wing design prompted the examination of the then current assembly processes and tooling. The hesitation to build new drill templates for use in the traditional method of second stage wing spar assembly inspired Tool Engineering Management to request the investigation of a low cost automated drilling apparatus. As a result, the Boeing Automated Tools Group and Advanced Integration Technology, Inc. (AIT) developed and implemented mobile numerically controlled mini-drilling machines for post-ASAT I assembly-drilling operations.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

2007-01-17
2007-01-3888
The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

THE EVOLUTIONARY DEVELOPMENT AND CURRENT STATUS OF THE AUGMENTOR WING CONCEPT

1970-02-01
700812
A review is made of previously reported status of the augmentor wing concept, including test work of de Havilland Aircraft of Canada and the NASA Ames Research Center. More recent NASA data which formed the basis for proceeding with a flight research vehicle program on the Buffalo CV-7A are discussed. This background is used to show potential application to a turbofan-powered production airplane concept whose highly integrated propulsion and aerodynamics show promise for a very quiet STOL. Proposed future augmentor wing development programs are also briefly discussed.
Journal Article

System for Recirculation of Mobile Tooling

2015-09-15
2015-01-2494
Aircraft assembly systems which require tooling or machinery to pulse or move between multiple positions within a factory can be positioned with high repeatability without high performance foundations or sweeping out large areas of floorspace. An example shows a system of large left and right-hand frames which are positioned at 3 sequential manufacturing steps and then recirculated to the start of production via a central return aisle. The frames are 41 ton actual weight and are 72′ long, similar to a rail car. The system achieves rectangular motion for the recirculation path. The supporting and moving system incorporates low-cost rail in a floor with minimal preparation and simple to use controls. The system is also easily reconfigured if the manufacturing system needs to be altered to meet rate or flow requirements.
Journal Article

Synthesizing Metrology Technologies to Reduce Engineering Time for Large CNC Machine Compensation

2011-10-18
2011-01-2780
Very large multi-axis CNC machines offer a special challenge for efficient and accurate machine compensation. Aerospace applications demand tight tolerances, but conventional compensation methods become expensive for large machines. Volumetric compensation offers an approach for reducing costs and improving accuracies. A unique control architecture enabled by volumetric compensation enables the use of a single part program by multiple machines. Combining multiple technologies (a proprietary volumetric compensation solver program, Spatial Analyzer, API's Active Target, a laser tracker and bespoke CNC-Tracker communication software for measurement triggering) significantly reduces machine compensation time. Available analysis tools also enable the engineer to evaluate measurement uncertainties and determine the best locations for additional stations as well as quantify the accuracy benefits such stations would offer.
Technical Paper

Slug Rivet Machine Installs 16 Rivets Per Minute Drill-Rivet-Shave

2009-11-10
2009-01-3155
Electroimpact has designed the E6000, the next generation riveting machine, with a focus on reduced weight and speed. It will initially be used on ARJ21 wing panels in Xi'an, China, but it is able to fasten a variety of panels including A320 and 737. The E6000's fastening cycle is capable of forming and shaving 16 rivets per minute. Head alignment is maintained by two independent four axis heads using a combination of controls and kinematics. Process tool speed has been improved via high lead screws, high speed Fanuc motors, and a shorter head stone drop. An innovative EI operator interface enhances end user experience.
Technical Paper

Simulation Enhanced Work Instructions for Aircraft Assemblies

1998-06-02
981861
The Boeing Company is developing and implementing the tools for the 21st Century for product development with their Design Manufacturing and Producibility Simulation (DMAPS) program. DMAPS combines the best of people, hardware and software tools commercially available to develop product and process simulation applications. The DMAPS toolset enhances the process of preparing concept layouts, assembly layouts and build-to-packages. Comprised of an Integrated Product and Process Team (IPPT), DMAPS produces products faster and with higher quality. The result is a process that eliminates costly changes and rework, and provides all IPPT's the tools and training necessary to perform their tasks right the first time. Boeing applies DMAPS tools to a variety of existing and new programs to build more affordable products. Savings goals set forth by the program are shown in Figure 1.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

Robotic Drilling and Countersinking on Highly Curved Surfaces

2015-09-15
2015-01-2517
Electroimpact has developed a novel method for accurately drilling and countersinking holes on highly convex parts using an articulated arm robotic drilling system. Highly curved parts, such as the leading edge of an aircraft wing, present numerous challenges when attempting to drill normal to the part surface and produce tight tolerance countersinks. Electroipmact's Accurate Robot technology allows extremely accurate positioning of the tool point and the spindle vector orientation. However, due to the high local curvature of the part, even a small positional deviation of the tool point can result in a significantly different normal vector than expected from an NC program. An off-normal hole will result in an out of tolerance countersink and a non-flush fastener.
Journal Article

Rivet and Bolt Injector with Bomb Bay Ejection Doors

2013-09-17
2013-01-2151
Electroimpact's newest riveting machine features a track-style injector with Bomb Bay Ejection Doors. The Bomb Bay Ejection Doors are a robust way to eject fasteners from track style injector. Track style injectors are commonly used by Electroimpact and others in the industry. Using the Bomb Bay Doors for fastener ejection consists of opening the tracks allowing very solid clearing of an injector when ejecting a fastener translating to a more reliable fastener delivery system. Examples of when fastener ejection is needed are when a fastener is sent backwards, when there are two in the tube, or when a machine operator stops or resets the machine during a fastening cycle. This method allows fasteners to be cleared in nearly every situation when ejecting a fastener is required. Additional feature of Electroimpact's new injection system is integrated anvil tool change.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Radial and Tangential Forces, Tool Motion, and the Formation of Lobed Holes in Drilling

2002-09-30
2002-01-2637
Out-of-round holes are formed as a result of tool motion during drilling. Tool vibration is driven by radial and tangential forces on the primary and secondary cutting edges. These forces in turn depend on the chip loads on each cutting edge, which in turn depend on the position of the tool at the current time and at the time of the previous tooth passage. A preliminary analysis based on balancing the cutting forces and the bending forces on the tool, shows that the characteristic frequencies of motion of the tool in the tool frame are near 3/rev, 5/rev, 7/rev etc. (corresponding to 2/rev, 4/rev, 6/rev) in the workpiece frame. These motions are consistent with the tool motion and hole form errors commonly observed on the shop floor. We will describe procedures for measuring the dependence of cutting forces on chip load, the development of simple equations for lateral motion of the tool, and solutions for the tool's behavior.
Technical Paper

Power Quality Specification Development for More Electric Airplane Architectures

2002-10-29
2002-01-3206
Power quality has become a subject of increased attention for electrical power systems on both commercial and military aircraft. Several power quality guidelines and specification documents exist that govern today's power system operation and the contributing characteristics of electrical load equipment. This paper presents power quality requirements for future Boeing commercial airplanes, driven by advances in aerospace applications of power electronic equipment, increased load demand and complexity, as well as new power system architectures. The influence of new equipment types on electrical system power quality is described including the effects of motor controllers, AC power converters, and large dynamic loads. The impact of power type classifications such as variable frequency AC power and multiple DC voltage levels is also discussed. Simulation results are presented to develop and validate these power quality requirements.
Technical Paper

Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

2003-07-07
2003-01-2487
Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station's U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBA's service life.
X