Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Powertrain Calibration at GM Becomes a Reality

2010-10-19
2010-01-2323
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Journal Article

Variable and Fixed Airflow for Vehicle Cooling

2011-04-12
2011-01-1340
This paper describes rationale for determining the apportionment of variable or ‘shuttered’ airflow and non-variable or static airflow through openings in the front of a vehicle as needed for vehicle cooling. Variable airflow can be achieved by means of a shutter system, which throttles airflow through the front end and into the Condenser, Radiator, and Fan Module, (CRFM). Shutters originated early in the history of the auto industry and acted as a thermostat [1]. They controlled airflow as opposed to coolant flow through the radiator. Two benefits that are realized today are aerodynamic and thermal gains, achieved by restricting unneeded cooling airflow. Other benefits exist and justify the use of shutters; however, there are also difficulties in both execution and practical use. This paper will focus on optimizing system performance and execution in terms of the two benefits of reduced aerodynamic drag and reduced mechanical drag through thermal control.
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Role of Worst-Case Operating Scenario and Component Tolerance in Robust Automotive Electronic Control Module Design

2023-04-11
2023-01-0849
Use of electronic systems in the vehicles is increasing day by day. As Electronic Control Modules (ECMs) become a large part of the vehicle, automotive designers need to take diligent decision of selecting electrical and electronic components. Selecting these components for ECM depends on four major factors: meeting stringent vehicle requirements, performance over the lifespan, robustness/reliability and cost. There is always an urge of reducing the cost of the ECM, but robustness of the controller module must not be compromised. One electrical or electronic component failure or false fault detection not only increases warranty cost but may also stall the vehicle, and interrupts customer’s daily routine creating dissatisfaction. This paper emphasizes on the importance of understanding worst-case operating scenarios considering component tolerances over the operating range, datasheet, and impact of tolerances on performance and fault detection.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Power Modules and Inverter Evaluation for GM Electrification Architectures

2012-04-16
2012-01-0340
GM has recently developed two kinds of vehicle electrification architectures. First is VOLTec, a heavy electrification architecture, and second is eAssist, a light electrification architecture. An overview, of IGBT power modules & inverters used in VOLTec and eAssist, is presented. Alternative power modules from few cooperative suppliers are also described in a benchmarking study using key metrics. Inverter test set up, procedure and instrumentation used in GM Power Electronics Development Lab, Milford are described. GM electrification journey depends on Power Electronics lab' passive test benches; double pulse tester, inductive resistive load bench and active emulator test cell without electric machines. Such test benches are preferred before dyne test cells are used for inverter software/hardware integration and motor durability tests cycles. Specific test results are presented.
Technical Paper

Optimization of Scratch Resistance for Molded in Color Interior Thermoplastic Olefin Injection Molded Plastics

2011-04-12
2011-01-0464
As customer dissatisfaction with interior trim components is tracked by the JDPowers question on “surface durability”, there is a need to increase the durability of the parts that are molded in color. In particular, door trim panel lowers are susceptible to surface damage which results in an unfavorable appearance. To address this issue, an assessment of the various factors that can affect surface durability was conducted using talc filled TPO materials in order to determine the optimum set of physical properties. The team used Design for Six Sigma (DFSS) methodology. A Taguchi orthogonal experiment was used and included control system factors of material, grain, gloss, and color. Noise factors included molding process parameters, aging, and piece to piece variation. The output was a measure of the scratch resistance of the molded plaque which was defined by a Delta L calculation.
Journal Article

On Designing Software Architectures for Next-Generation Multi-Core ECUs

2015-04-14
2015-01-0177
Multi-core systems are promising a cost-effective solution for (1) advanced vehicle features requiring dramatically more software and hence an order of magnitude more processing power, (2) redundancy and mixed-IP, mixed-ASIL isolation required for ISO 26262 functional safety, and (3) integration of previously separate ECUs and evolving embedded software business models requiring separation of different software parts. In this context, designing, optimizing and verifying the mapping and scheduling of software functions onto multiple processing cores becomes key. This paper describes several multi-core task design and scheduling design options, including function-to-task mapping, task-to-core allocation (both static and dynamic), and associated scheduling policies such as rate-monotonic, criticality-aware priority assignment, period transformation, hierarchical partition scheduling, and dynamic global scheduling.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Metrics for Quantifying and Evaluating Ability of Electronic Control System Architectures to Accommodate Changes

2011-04-12
2011-01-0447
Recent trends in the automotive industry show growing demands for the introduction of new in-vehicle features (e.g., smart-phone integration, adaptive cruise control, etc.) at increasing rates and with reduced time-to-market. New technological developments (e.g., in-vehicle Ethernet, multi-core technologies, AUTOSAR standardized software architectures, smart video and radar sensors, etc.) provide opportunities as well as challenges to automotive designers for introducing and implementing new features at lower costs, and with increased safety and security. As a result, the design of Electrical/Electronic (E/E) architectures is becoming increasingly challenging as several hardware resources are needed. In our earlier work, we have provided top-level definitions for three relevant metrics that can be used to evaluate E/E architecture alternatives in the early stages of the design process: flexibility, scalability and expandability.
Technical Paper

Mechanical Design Considerations for Electric Vehicle Power Electronics

2023-04-11
2023-01-0531
Designing power electronics to operate in harsh vehicle environments while meeting packaging requirements such as mass, volume, and power density, creates several challenges for their mechanical design. In this work, we concentrate on the power inverter module (PIM) which converts high voltage (HV) DC voltage power from the HV battery to AC power to drive the motor. The PIM main components are the power module, gate drive and the bulk capacitor. The sizing and selection of the bulk capacitor and power module depend on performance criteria and drive profiles in addition to operating temperatures. In this work, we share the main challenges of packaging components within the inverter. We then discuss best practices to ensure a robust mechanical design which meets inverter durability and reliability targets for an electric vehicle application. The main challenges discussed are bulk capacitor thermals, sealing, and Silicon Carbide (SiC) packaging.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Journal Article

Large Scale Multi-Disciplinary Optimization and Long-Term Drive Cycle Simulation

2020-04-14
2020-01-1049
Market demands for increased fuel economy and reduced emissions are placing higher aerodynamic and thermal analysis demands on vehicle designers and engineers. These analyses are usually carried out by different engineering groups in different parts of the design cycle. Design changes required to improve vehicle aerodynamics often come at the price of part thermal performance and vice versa. These design changes are frequently a fix for performance issues at a single performance point such as peak power, peak torque, or highway cruise. In this paper, the motivation for a holistic approach in the form of multi-disciplinary optimization (MDO) early in the design process is presented. Using a Response-surface Informed Transient Thermal Model (RITThM) a vehicle's thermal performance through a drive cycle is predicted and correlated to physical testing for validation.
Technical Paper

Kriging-Assisted Structural Design for Crashworthiness Applications Using the Extended Hybrid Cellular Automaton (xHCA) Framework

2020-04-14
2020-01-0627
The Hybrid Cellular Automaton (HCA) algorithm is a generative design approach used to synthesize conceptual designs of crashworthy vehicle structures with a target mass. Given the target mass, the HCA algorithm generates a structure with a specific acceleration-displacement profile. The extended HCA (xHCA) algorithm is a generalization of the HCA algorithm that allows to tailor the crash response of the vehicle structure. Given a target mass, the xHCA algorithm has the ability to generate structures with different acceleration-displacement profiles and target a desired crash response. In order to accomplish this task, the xHCA algorithm includes two main components: a set of meta-parameters (in addition target mass) and surrogate model technique that finds the optimal meta-parameter values. This work demonstrates the capabilities of the xHCA algorithm tailoring acceleration and intrusion through the use of one meta-parameter (design time) and the use of Kriging-assisted optimization.
Journal Article

Iterative Learning Algorithm Design for Variable Admittance Control Tuning of A Robotic Lift Assistant System

2017-03-28
2017-01-0288
The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
Technical Paper

Initial Comparisons of Friction Stir Spot Welding and Self Piercing Riveting of Ultra-Thin Steel Sheet

2018-04-03
2018-01-1236
Due to the limitations on resistance spot welding of ultra-thin steel sheet (thicknesses below 0.5 mm) in high-volume automotive manufacturing, a comparison of friction stir spot welding and self-piercing riveting was performed to determine which process may be more amenable to enabling assembly of ultra-thin steel sheet. Statistical comparisons between mechanical properties of lap-shear tensile and T-peel were made in sheet thickness below 0.5 mm and for dissimilar thickness combinations. An evaluation of energy to fracture, fracture mechanisms, and joint consistency is presented.
Technical Paper

Identification of Transportation Battery Systems for Recycling

2012-04-16
2012-01-0351
Electrification of the transportation industry is increasing rapidly with batteries currently the technology of choice. At the end of life, the battery chemistry used to electrify the vehicle may not be easily identifiable. A simple, common identifier is required to allow consumers, service and waste management personnel to direct unknown battery types to appropriate recyclers or secondary use markets. Recyclers also benefit from this identifier as it allows them to sort, screen for potential contamination to existing process streams, and identify the manufacturer so they may contact them to find detailed information about the battery to ensure proper and safe recycling. The SAE Battery Recycling Committee has recommended that batteries be identified by battery system, miscellaneous hazards and date of manufacture be identified as part of chemistry identification code. For the lithium-ion chemistry it is further recommended that cathode and anode be specified.
X