Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Utilization of Single Cantilever Beam Test for Characterization of Ice Adhesion

2019-06-10
2019-01-1949
Many engineering systems operating in a cold environment are challenged by ice accretion, which unfavorably affects their aerodynamics and degrades both their performance and safety. Precise characterization of ice adhesion is crucial for an effective design of ice protection system. In this paper, a fracture mechanics-based approach incorporating single cantilever beam test is used to characterize the near mode-I interfacial adhesion of a typical ice/aluminum interface with different surface roughness. In this asymmetric beam test, a thin layer of ice is formed between a fixed and elastically deformable beam subjected to the applied loading. The measurements showed a range of the interfacial adhesion energy (GIC) between 0.11 and 1.34 J/m 2, depending on the substrate surface roughness. The detailed inspection of the interfacial ice fracture surface, using fracture surface replication technique, revealed a fracture mode transition with the measured macroscopic fracture toughness.
Technical Paper

The Role of Chemically Modified Surfaces in the Construction of Miniaturized Analytical Instrumentation

1993-07-01
932207
This paper describes the development of a thin-film optical sensor for measuring pH. The indicator behaves as a polyprotic acid with differing optical properties in each of its chemical forms. Together, these properties facilitate the development of an internally calibrated sensor by calculating the ratios of the absorption maximas for each form of the indicator. The covalent immobilization procedure developed demonstrated long term stability of 4 months without recalibration.
Technical Paper

The Effects of Engine Performance and Engine Starts on Series HEV Operation

1997-02-24
970288
This work presents the analytic and experimental results relating engine performance and operating schedule with fuel cost and tail-pipe emissions for the series hybrid electric vehicle (HEV) design. Results are based on vehicle data from the electric G-van produced by Conceptor Industries. A computer simulation developed using basic principles predicts the battery demand over a specified vehicle operation profile. Engine tests on the effects of engine power level and number of starts show that while fuel consumption did not vary, carbon monoxide (CO) emissions did show an increase. The engine used was a 2-cylinder, spark ignited, 4-stroke, carbureted engine and did not utilize exhaust after-treatment. The results of the engine tests and simulation data are combined to predict the CO emissions and fuel cost for the series HEV design. The estimated CO output was 18.7 g/km, and the fuel cost was estimated between 4.3 and 4.5 cents/km.
Technical Paper

Parallel Computing of KIVA-4 Using Adaptive Mesh Refinement

2009-04-20
2009-01-0723
Parallel computing schemes were developed to enhance the computational efficiency of engine spray simulations with adaptive mesh refinement (AMR). Spray simulations have been shown to be grid dependent and thus fine mesh is often used to improve solution accuracy. In this study, dynamic mesh refinement adaptive to spray region was developed and parallelized in KIVA-4. The change of cell and node numbers and the local characteristics in the dynamic mesh refinement posed difficulties in developing efficient parallel computing schemes to achieve low communication overhead and good load balance. The present strategy executed AMR on one processor with data scattering among processors following the adaptation, and performed AMR every ten computational timesteps for enhanced parallel performance. The re-initialization was required and performed at the minimized cost.
Journal Article

Numerical and Experimental Investigation of Ice Adhesion Using the Blister Test

2019-06-10
2019-01-1948
Structures in cold weather environments are susceptible to atmospheric ice formation. A fracture mechanics based approach is proposed for in situ characterization of the interfacial fracture energy of ice on different substrates. This paper summarizes the development of the experimental and analytical framework to measure the ice adhesion energy, calibrated on static ice. The testing configuration utilizes a shaft-loaded blister test to produce stable crack propagation, from a well-defined pre-crack at the interface of the ice layer and the substrate. Measurements of the fracture energy are taken over a range of ice thicknesses and surface roughnesses. The developed analytical framework to estimate adhesion energy are verified and calibrated via finite element numerical simulation of the proposed geometric configuration and employing cohesive surfaces along the interface to simulate the crack nucleation and propagation process.
Technical Paper

Numerical Study of Fuel Droplet Impact on Heated Surfaces Using Smoothed Particle Hydrodynamics Method

2019-04-02
2019-01-0291
The impact of fuel droplets on heated surfaces is of great importance in internal combustion engines. In engine computational fluid dynamics (CFD) simulations, the drop-wall interaction is usually considered by using models derived from experimental data and correlations rather than direct simulations. This paper presented a numerical method based on smoothed particle hydrodynamics (SPH), which can directly simulate the impact process of fuel droplets impinging on solid surfaces. The SPH method is a Lagrangian meshfree particle method. It discretizes fluid into a number of SPH particles and governing equations of fluid into a set of particle equations. By solving the particle equations, the movement of particles can be obtained, which represents the fluid flows. The SPH method is able to simulate the large deformation and breakup of liquid drops without using additional interface tracking techniques.
Technical Paper

Multiple Steered Axles for Reducing the Rollover Risks of Heavy Articulated Trucks

1988-10-01
881866
This paper presents an analytical study of the performance improvements that can be obtained at both high and low speed using multiple steered axles on heavy articulated trucks. At high speed, rollover usually represents a worst case scenario. Therefore we have chosen to evaluate possible steering designs based on their ability to reduce lateral acceleration of the semitrailer center of gravity. This is in contrast to passenger cars where four-wheel steering has typically been evaluated based on measures that were thought to be related to driver acceptance. This paper also investigates the effects of steering rear tractor axles on the low-speed maneuverability of the vehicle. Steering algorithms for the rear tractor tires were evaluated using frequency response and simulation of an obstacle avoidance maneuver. Results indicate that at high speeds considerable reductions in trailer lateral acceleration can be obtained during transient maneuvers.
Journal Article

Modeling the Effects of Drop Impingement Frequency on Heated Walls at Engine Conditions

2022-03-29
2022-01-0508
Understanding the fundamental details of drop/wall interactions is important to improving engine performance. Most of the drop-wall interactions studies are based on the impact of a single drop on the wall. To accurately mimic and model the real engine conditions, it is necessary to characterize spray/wall interactions with different impingement frequencies at a wide range of wall temperatures. In this study, a numerical method, based on Smoothed Particle Hydrodynamics (SPH), is used to simulate consecutive droplet impacts on a heated wall both below and above the Leidenfrost temperature. Impact regimes are identified for various impact conditions by analyzing the time evolution of the post-impingement process of n-heptane drops at different impingement frequencies and wall surface temperatures. For wall temperature below the Leidenfrost temperature, the recoiled film does not leave the surface.
Technical Paper

DISI Spray Modeling Using Local Mesh Refinement

2008-04-14
2008-01-0967
The accurate prediction of fuel sprays is critical to engine combustion and emissions simulations. A fine computational mesh is often required to better resolve fuel spray dynamics and vaporization. However, computations with a fine mesh require extensive computer time. This study developed a methodology that uses a locally refined mesh in the spray region. Such adaptive mesh refinement will enable greater resolution of the liquid-gas interaction while incurring only a small increase in the total number of computational cells. The present study uses an h-refinement adaptive method. A face-based approach is used for the inter-level boundary conditions. The prolongation and restriction procedure preserves conservation of properties in performing grid refinement/coarsening. The refinement criterion is based on the mass of spray liquid and fuel vapor in each cell. The efficiency and accuracy of the present adaptive mesh refinement scheme is demonstrated.
Technical Paper

Computational Optimization of a Diesel Engine Calibration Using a Novel SVM-PSO Method

2019-04-02
2019-01-0542
Accelerated computational optimization of a diesel engine calibration was achieved by combining Support Vector Regression models with the Particle Swarm Optimization routine. The framework utilized a full engine simulation as a surrogate for a real engine test with test parameters closely resembling a typical 4.5L diesel engine. Initial tests were run with multi-modal test problems including Rastragin's, Bukin's, Ackely's, and Schubert's functions which informed the ML model tuning hyper-parameters. To improve the performance of the engine the hybrid approach was used to optimize the Fuel Pressure, Injection Timing, Pilot Timing and Fraction, and EGR rate. Nitrogen Oxides, Particulate Matter, and Specific Fuel Consumption are simultaneously reduced. As expected, optimums reflect a late injection strategy with moderately high EGR rates.
Technical Paper

Comparison of Three and Four Wheeled ATVs Over a Bump Profile

1989-02-01
890871
Several new mathematical models of a rider ATV system are developed. These new models allow the ATV to have either three or four wheels, the rider to be placed at any orientation relative to the vehicle, and the ATVs wheels to rotate. These models are used to investigate the simulated motion of an ATV system over a bump profile. For each model, overturning stability plots are generated as a function of the rider's side lean angle and the vehicle's initial velocity. These results show that the four-wheeled ATV system is more stable than the three-wheeled ATV system over the bump profile. In addition, the inclusion of wheel rotation only slightly improves the overturning stability of the ATV system and this improvement occurs only at high vehicle speeds.
Technical Paper

Characterization of Mode-II Interfacial Fracture Toughness of Ice/Metal Interfaces

2019-06-10
2019-01-1947
Airborne, marine and ground structures are vulnerable to atmospheric icing in cold weather operation conditions. Most of the ice adhesion-related work have focused on the mechanical ice removal strategies because of practical considerations, while limited literature is available for fundamental understanding of the ice adhesion process. Here, we present a fracture mechanics-based approach to characterize interfacial fracture parameters for the shear behavior of a typical ice/aluminum interface. An experimental framework employing two complementary tests (1) lap shear and (2) shear push-out tests was introduced to assess the mode-II fracture parameters for the selected aluminum/ice interface. Both analytical (shear-lag analysis) and numerical (finite element analysis incorporating cohesive zone method) models were used to evaluate shear fracture parameters.
Technical Paper

Augmentation of an Artificial Neural Network (ANN) Model with Expert Knowledge of Critical Combustion Features for Optimizing a Compression Ignition Engine Using Multiple Injections

2017-03-28
2017-01-0701
The objective of this work was to identify methods of reliably predicting optimum operating conditions in an experimental compression ignition engine using multiple injections. Abstract modeling offered an efficient way to predict large volumes data, when compared with simulation, although the initial cost of constructing such models can be large. This work aims to reduce that initial cost by adding knowledge about the favorable network structures and training rules which are discovered. The data were gathered from a high pressure common rail direct injection turbocharged compression ignition engine utilizing a high EGR configuration. The range of design parameters were relatively large; 100 MPa - 240 MPa for fuel pressure, up to 62% EGR using a modified, long-route, low pressure EGR system, while the pilot timing, main timing, and pilot ratio were free within the safe operating window for the engine.
Technical Paper

An Experimental Study to Evaluate the Droplet Impinging Erosion Characteristics of an Icephobic, Elastic Soft Surface

2019-06-10
2019-01-1997
Elastic soft material/surface, such as Polydimethylsiloxane (PDMS), is a perspective, useful and low-cost hydrophobic and icephobic coating. While it has been reported to have good mechanical durability, its erosion durability under the high impacting of water droplets pertinent to aircraft inflight icing phenomena has not been explored. In this study, the droplet imping erosion characteristics of an icephobic PDMS surface/material is evaluated systematically upon the dynamic impinging of water droplets at different impact velocities (~ up to 75m/s), in comparison with other state-of-the-art icephobic materials/surfaces, such as superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS). Surprisingly, the contact angle (CA) of the elastic PDMS is shown to have an over 20° increase (from 105° to 128°), which represents better hydrophobicity, after the erosion test which is mainly contributed to the higher roughness of the eroded PDMS surface.
Technical Paper

An Experimental Study on the Effects of the Layout of DBD Plasma Actuators on Its Anti-/De-Icing Performance for Aircraft Icing Mitigation

2019-06-10
2019-01-2033
Recently developed dielectric barrier discharge (DBD) plasma-based anti-icing systems have shown great potential for aircraft icing mitigation. In the present study, the ice accretion experiments were performed on to evaluate the effects of different layouts of DBD plasma actuators on their anti-/de-icing performances for aircraft icing mitigations. An array of DBD plasma actuators were designed and embedded on the surface of a NACA0012 airfoil/wing model in different layout configurations (i.e., different alignment directions of the plasm actuators (e.g., spanwise vs. streamwise), width of the exposed electrodes and the gap between the electrodes) for the experimental study. The experimental study was carried out in the Icing Research Tunnel available at Iowa State University (i.e., ISUIRT).
Technical Paper

An Experimental Study on the Dynamic Ice Accretion Processes on Bridge Cables with Different Surface Modifications

2019-06-10
2019-01-2018
An experimental study was conducted to investigate the dynamic ice accretion processes on bridge cables with different surface modifications (i.e., 1. Standard plain, 2. Pattern-indented surface, and 3. helical fillets). The icing experiments were performed in the unique Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT). In order to reveal the transient ice accretion processes and the associated aerodynamic loadings on the different cable models under the different icing conditions (i.e., rime vs. glaze), while a high-speed imaging system was used to capture the transient details of the surface water transport and ice accretion over the cable surfaces, a high-accuracy dual-transducer force measurement system was also utilized to measure the aerodynamic loadings acting on the ice accreting cable models.
Technical Paper

An Experimental Study on a Hot-Air-Based Anti-/De-Icing System for the Icing Protection of Aero-Engine Inlet Guide Vanes

2019-06-10
2019-01-2039
In the present study, an experimental investigation was conducted to characterize a hot-air-based anti-/de-icing system for the icing protection of aero-engine inlet guide vanes(IGVs). The experimental study was conducted in a unique icing research tunnel available at Iowa State University (i.e., ISU-IRT). A hollowed IGV model embedded with U-shaped hot-air flowing conduit was designed and manufactured for the experimental investigations. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion or anti-/de-icing process over the surface of the IGV model for the test cases without and with the hot-air supply system being turned on, the corresponding surface temperature distributions on the IGV model were measured quantitatively by using a row of embedded thermocouples.
Technical Paper

An Experimental Investigation of a Wind-Driven Water Droplet over the Slippery Liquid Infused Porous Surface

2019-06-10
2019-01-1951
The promising anti-icing performance of the slippery liquid infused porous surface (SLIPS) has been recently demonstrated for various engineering applications. The runback icing for aircraft and wind turbines could be effectively mitigated considering the timely removal of water droplet by the wind shearing force due to the low adhesion on the SLIPS. In this study, the flow field both inside and around the wind-driven droplet over the SLIPS was experimentally investigated by using Particle Image Velocimetry (PIV) technique. Previous studies majorly focus on the internal flow pattern before the droplet incipient motion. In this study, the flow field inside a moving droplet was firstly investigated. As a result of the low surface adhesion of the SLIPS, droplet oscillations were eliminated and the droplet internal flow field could be corrected from the optical distortion.
Technical Paper

A Parametric Study on the Thermodynamic Characteristics of DBD Plasma Actuation and Its Potential for Wind Turbine Icing Mitigation

2019-06-10
2019-01-2031
Wind turbine icing represents the most significant threat to the integrity of wind turbines in cold weather. Ice formation on wind turbine blades was found to cause significant aerodynamic performance degradation, resulting in a substantial drop in energy production. Recently developed Dielectric barrier discharge (DBD) plasma-based anti-/de-icing systems showed very promising effects for aircraft icing mitigation. In this present study, DBD plasma-based anti-/de-icing systems were employed for wind turbine icing mitigation. First, a comprehensive parametric study is conducted to investigate the effects of various DBD plasma actuation parameters on its thermodynamic characteristics. An infrared (IR) thermal imaging system is used to quantitatively measure the temperature distributions over the test plate under various test conditions.
Technical Paper

A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation

2019-06-10
2019-01-2029
The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model.
X