Refine Your Search

Topic

Author

Search Results

Technical Paper

Systematic Approach to Design Hand Controlled Parking Brake System for Passenger Car

2015-01-14
2015-26-0078
This paper is an attempt to compile a systematic approach which can be easily incorporated in the product development system used in the design and development of parking brake systems for passenger cars having rear drum brakes, which in turn can effectively reduce the lead time and give improved performance. The vehicle GVW, percentage gradient and maximum effort limits (as per IS 11852 - Part 3), tire and drum brake specifications were taken as front loading. This data is used for target setting of functional and engineering parameters, such as lever pull effort, lever ratio and angular travel of lever. Design calculations were performed to obtain theoretical values of critical parameters like lever effort and travel. The comparison between target and theoretical values give the initial confidence to the system engineer. Further, the outcome was taken to conceptualize the hard points of lever on vehicle for ergonomics.
Technical Paper

Side Door Closing Velocity Reduction Parameters in a SUV

2023-04-11
2023-01-0606
Side Door closing velocity is one of the key customer touch points which depicts the build quality of the vehicle. Side door closing velocity results from the interaction of different parts like door and body seals, door check arm, door hinge, latch, and alignment of door hinge axis. In this paper, a high door closing velocity issue in a sports utility vehicle is discussed. Physical studies are carried out to understand each parameter in door closing velocity and its contribution is defined in terms of velocity. Many physical trials are conducted to conclude the contribution of each parameter. Studies revealed that the body and door seal are contributing around 70% of door closing velocity. Check arm and hinge axis deviation are contributing around 10% of the door closing velocity. Physical trials are conducted by reducing the compression distance of the body seal.
Technical Paper

Prediction of Oil Flow inside Tractor Transmission for Splash Type Lubrication

2019-01-09
2019-26-0082
This study introduces a method to examine the flow path of the lubricant inside a transmission housing of a tractor. A typical gearbox has several loads bearing elements which are in relative sliding motion to each other which causes heat to be released. The major sources of friction as well as heat are the meshing teeth between gears (sun/planet, planet/ring & power/range drive gear), thrust washers, thrust bearings and needle roller bearings. The churning of oil performs the vital function of both lubricating these sliding interfaces and cooling these sources of heat, thereby preventing failure of the gearbox. In this paper, we have applied VOF multiphase flow model and sliding meshing to simulate the fluid flow during splashed lubrication within a mating gear box. Lubrication oil dynamics and oil surface interaction with the air is modeled using VOF multiphase approach.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0026
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0028
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

Performance Modification of Three Cylinder Diesel Engine Ge-Rotor Oil Pump through Rotor and PRV System

2017-07-10
2017-28-1934
Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine. Otherwise low oil pressure leads to more friction in the pump, seizure of bearings and final failure of the engine .High oil pressure can lead to failure in oil filter, gaskets and seal.
Technical Paper

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

2019-10-11
2019-28-0028
The automotive industries around the world is undergoing massive transformation towards identifying technological capabilities to improve vehicle performance. In this regard, the engine dynamic torque plays a crucial role in defining the transient performance and drivability of a vehicle. Moreover, the dynamic torque is used as a visualization parameter in performance prediction of a vehicle to set the right engineering targets and to assess the engine potential. Hence, an accurate measurement and prediction of the engine dynamic torque is required. However, there are very few methodologies available to measure the engine dynamic torque with reasonable accuracy and minimum efforts. The measurement of engine brake torque using a torque transducer is one of the potential methods. However, it requires a lot of effort and time to instrument the vehicle. It is also possible to back-calculate the engine torque based on fuel injection quantity and other known engine parameters.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

Optimization of Body-in-White Weld Parameters for DP590 and EDD Material Combination

2021-10-01
2021-28-0215
Body in White (BIW) of an automobile serves as the shell, on which all the components that make up a vehicle, are mounted. The BIW is an assembly of press formed sheet metal components. The sheet metal composition of each component varies based on the form and functionality requirement of that component. The resulting assembly has multiple weld joineries with dissimilar compositions. The weld integrity of the joineries is crucial in maintaining the geometrical and structural integrity of the BIW. The primary welding method used in BIW assembly is Resistance Spot Welding (RSW). The quality of the weld is an outcome of a combination of multiple weld parameters. These parameters are majorly estimated based on the joinery thicknesses and material combinations. Multiple welding and testing iterations are done to fine tune the parameters for an optimum weld joinery. This is a very tedious process which increases the process time of a BIW assembly.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Methodological Approach for Matching Gear and Final Drive Ratio for Better Fuel Economy, Performance and Drivability

2018-04-03
2018-01-0865
Fuel economy, performance and drivability are the three important parameters for evaluating the vehicle performance. Powertrain matching plays a major role in meeting the above targets. Fuel economy is measured based on city, highway and some user defined driving cycles which can be considered as real world usage profiles. Performance and Drivability is evaluated based on the in-gear, thru-gear (acceleration performance) and grade-ability performance. The load collective points of the engine greatly influence the engines performance, fuel economy and emissions, which in-turn depends on the N/V ratio of the vehicle. The optimal selection of gear and final drive ratios plays a key role in the optimization of the Powertrain for a particular vehicle. The current study involves dynamic simulation of the vehicle performance and fuel economy at transient engine test-bed for different gear and final drive ratio combinations using AVL DynoExcat-dynamometer.
Technical Paper

Innovative Setting Bracket Design to Improve the Tractor Fit and Finish between the Bonnet and Custer Panel (Scuttle)

2020-09-25
2020-28-0479
Innovative setting bracket design to improve the tractor Fit and Finish between the Bonnet and Custer panel (Scuttle) The paper presents an integrated approach for arriving a process to assemble scuttle regarding bonnet to achieve Gap and flushness aesthetic requirement. Variation is inevitable due to fitting of bonnet on Tractor front semi-chassis, scuttle fitting on tractor middle clutch housing and assembling many parts with different tolerances, hence the deviation (stack-up) obtained after their assembly varies from approximately -10.175 to 9.775 mm. This is quite large and gives a huge impact in aesthetic point of view. To overcome this issue, we introduced one Innovative intermediate bracket as the setting gauge which is assembled with reference to bonnet and scuttle is mounted on this setting bracket hence zero flushness and uniform achieved between bonnet and scuttle.
Technical Paper

Importance of Casting Soundness in Aluminium Parts for Laser Weld Quality

2024-01-16
2024-26-0191
Light weight and Robust manufacturing technologies are always needed for transformation drive in the Automotive industry for the next-generation vehicles with greater Power to weight ratio. Innovations and process developments in materials and manufacturing processes are key to this light weighting transformation. Aluminium material has been widely used for these light weighting opportunities. However, aluminum joining techniques, characterized by their poor quality and consistency are limiting this transformation. This technical paper represents one of such case, where the part is made up of Aluminium through conventional casting route which has affected the laser weld quality due to poor casting soundness. This experiment explains in detail about the importance of Casting soundness for laser weld quality, weld penetration, strength etc., and the Product consistency.
Technical Paper

Implementation of Lean Approaches in Proto Body Build to Improve Productivity and Flexibility

2017-07-10
2017-28-1965
Lean approaches are being implemented in various manufacturing facilities across the globe. The application of lean approaches are extended to Body proto build shop to maximize the efficiency of the shop with lesser floor space and optimized equipment. Weld fixture, Weld equipment and assembly tools are the major tools required essentially for proto BIW assembly. This paper explains how the Weld equipment planning was carried out with lean approaches and implemented effectively in proto body assembly shop. The implemented lean concepts are compared with Italy and Japanese proto body build makers to validate the frugal planning of the facility for the said intent. The implemented facility is capable of producing more than a model at a time. Weld parameter selection for weld gun, gun movement to the fixture with minimized change over time and movable weld gun gantry are the lean approaches implemented.
Technical Paper

Impact of Weld Fixture Clamp Force Variation on Dimensional Integrity in Low Volume Body-in-White Build

2021-10-01
2021-28-0216
Body in White (BIW) is an assembly of multiple sheet metal components. BIW is a major contributor to the dimensional and structural integrity of an automobile. The accuracy and precision of the BIW is influenced by multiple factors involved in the manufacturing lifecycle of the BIW, of which component development and assembly strategy are the most significant contributors. Weld fixtures are the tools used for accurately locating and holding, sheet metal components for joining. The primary motive of the locating and holding strategy is to arrest all degrees of freedom of a component. Geometric repeatability of the components is also of high importance. Component location is typically achieved by standardized locator pins that maintain the Principal Location Points (PLP). Mylars provided at Master Control Patches (MCP) ensure the resting and clamping of the component. Low volume BIW builds employ non-automated clamping methodologies, either with manual clamps or toggle clamps.
Technical Paper

High Durable PU Metallic Monocoat System for Tractor Sheet Metal Application

2019-11-21
2019-28-2541
In sheet metal painting for various applications like tractor and automobiles, most attractive coating is metallic paints. It is widely applied using 3 coat 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production through put time and lower productivity in manufacturing process. During various brainstorming and sustainability initiatives, paint application process was identified to reduce burden on environment and save energy. Various other industry benchmarking and field performance requirement studies helped to identify critical quality parameters. There was collaboration with supplier to develop monocoat system without compromising any performance and aesthetic properties. This resulted in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Journal Article

Fuel Injector Selection in Diesel Engine for BS6 Upgradation

2022-03-29
2022-01-0441
For meeting the stringent BS VI emissions in a 3-cylinder diesel engine the Exhaust after treatment system (EATS) was upgraded from a single brick DOC (diesel oxidation catalyst) to 2 brick DOC+sDPF (Diesel Particulate Filter) configuration. To meet the demands of emission regulation and sDPF requirements, changes were also required in the Fuel injection system. Major changes were done to the fuel injector and fuel pump. This paper primarily discusses the Fuel injector change from 1.1 to 2.2 family with changes in nozzle geometry, Nozzle tip protrusion (NTP), and injector cone angle and the effects on the emission and performance parameters. The various design values of NTP, cone angle, and Sac values are tested in an actual engine to meet the required power, torque and verified to meet NOx, HC, PM values as required by the new BS (Bharat Stage) VI regulation. Other boundary conditions are also checked - BSFC (Brake Specific Fuel Consumption), temperature, etc.
Technical Paper

Evaluation and Selection of Turbocharger Meeting BS6 Emission Norms for 1.99l Engine

2019-01-09
2019-26-0058
Migration to BS6 emission norms from BS4 levels involves strenuous efforts involving advanced technology and higher cost. The challenging part is on achieving the stringent emission norms without compromising the engine fuel economy, performance and NVH factors. Selection of hardware and attaining an optimal behaviour is therefore vital. This article focuses on the evaluation of three different configuration of turbochargers for the same engine to meet the BS6 emission norms and performance. The turbocharger samples used measure the same compressor diameter with varying trim ratios. Simulation and testing of turbochargers ensured positive results for confirmation of the system. Parameters like low speed torque, smoke and compressor efficiency were evaluated and analysed for all configurations. The safe limits of surge and choke regions of all the compressors were also studied and verified.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
X